
UNIVERSITÉ DE MONTRÉAL

AUTOMATED IMPROVEMENT OF SOFTWARE DESIGN BY SEARCH-BASED
REFACTORING

RODRIGO MORALES ALVARADO
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
DÉCEMBRE 2017

© Rodrigo Morales Alvarado, 2017.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

AUTOMATED IMPROVEMENT OF SOFTWARE DESIGN BY SEARCH-BASED
REFACTORING

présentée par : MORALES ALVARADO Rodrigo
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Mme NICOLESCU Gabriela , Doctorat, présidente
M. KHOMH Foutse, Ph. D., membre et directeur de recherche
M. ANTONIOL Giuliano, Ph. D., membre et codirecteur de recherche
M. CHICANO Francisco, Ph. D., membre et codirecteur de recherche
M. MERLO Ettore , Ph. D., membre
Mme SARRO Federica, Ph. D., membre externe

iii

DEDICATION

To my beloved Mother MaryTony for encouraging me to follow my dreams, and support me
in my darkness hours, and to my grand-father Raul who planted the seed of love in my early

years, and specially to all that believe in God and found inspiration and hope in its
teachings.

iv

ACKNOWLEDGEMENTS

I want to thank my supervisors Foutse Khomh, Francisco Chicano and Giuliano Antoniol for
leading me through the winding road of research, for the economical and emotional support,
and for sharing an invaluable amount of time to revise my work for the duration of my
program. For sure, I would not be able to complete my program without their opportune
advice and care.

I would like to thank my mother and sister for their unconditional support and love through
all of these years. Your words always motivate me to be a better person.

To Nazli, whose words of relief help me to endure during the exhaustive hours of works, and
who lend her hears to listen difficulties, even if they were unrelated to her major and hard
to understand.

I also like to thank my colleagues who collaborate with me during my studies at Polytech-
nique, some of them as co-authors in some papers, and some others as heroes anonymous.
Not less important are all the reviewers that bring new ideas and propose improvements to
all my papers published that are the base of this dissertation.

Finally, I like to thank CONACyT who economically support me for more than a year at the
end of my program.

v

RÉSUMÉ

Le coût de maintenance du logiciel est estimé à plus de 70% du coût total du système, en
raison de nombreux facteurs, y compris les besoins des nouveaux utilisateurs, l’adoption de
nouvelles technologies et la qualité des systèmes logiciels. De ces facteurs, la qualité est celle
que nous pouvons contrôler et continuellement améliorer pour empêcher la dégradation de
la performance et la réduction de l’efficacité (par exemple, la dégradation de la conception
du logiciel). De plus, pour rester compétitive, l’industrie du logiciel a raccourci ses cycles de
lancement afin de fournir de nouveaux produits et fonctionnalités plus rapidement, ce qui
entraîne une pression accrue sur les équipes de développeurs et une accélération de l’évo-
lution de la conception du système. Une façon d’empêcher la dégradation du logiciel est
l’identification et la correction des anti-patrons qui sont des indicateurs de mauvaise qualité
de conception. Pour améliorer la qualité de la conception et supprimer les anti-patrons, les
développeurs effectuent de petites transformations préservant le comportement (c.-à-d., re-
factoring). Le refactoring manuel est coûteux, car il nécessite (1) d’identifier les entités de
code qui doivent être refactorisées ; (2) générer des opérations de refactoring pour les classes
identifiées à l’étape précédente ; (3) trouver le bon ordre d’application des refactorings gé-
nérés, pour maximiser le bénéfice pour la qualité du code et minimiser les conflits. Ainsi,
les chercheurs et les praticiens ont formulé le refactoring comme un problème d’optimisa-
tion et utilisent des techniques basées sur la recherche pour proposer des approches (semi)
automatisées pour le résoudre.

Dans cette thèse, je propose plusieurs méthodes pour résoudre les principaux problèmes
des outils existants, afin d’aider les développeurs dans leurs activités de maintenance et
d’assurance qualité.

Ma thèse est qu’il est possible d’améliorer le refactoring automatisé en considérant de nou-
velles dimensions : (1) le contexte de tâche du développeur pour prioriser le refactoring des
classes pertinentes ; (2) l’effort du test pour réduire le coût des tests après le refactoring ; (3)
l’identification de conflit entre opérations de refactoring afin de réduire le coût de refacto-
ring ; et (4) l’efficacité énergétique pour améliorer la consommation d’énergie des applications
mobiles après refactoring.

Je propose quatre méthodes : (1) ReCon, qui exploite le contexte de tâche du développeur.
Cette méthode permet de réduire une médiane de 50% des anti-patrons au cours des tâches
de codage régulières, sans perturber le flux de travail du développeur dans les sessions de
refactoring dédiées. (2) RePOR, une méthode de refactoring capable de réduire l’effort de

vi

refactoring et le temps d’exécution de 80%. (3) TARF, une méthode de refactoring qui prend
en compte l’effort requis pour tester le logiciel. Les résultats montrent que nous pouvons
réduire une médiane de 48% de l’effort de test après la refactorisation. (4) EARMO, une
approche automatisée pour les applications mobiles, capable de supprimer 84% des anti-
patrones et d’allonger la durée de vie de la batterie jusqu’à 29 minutes pour une application
multimédia exécutant en continu un scénario typique.

J’ai appliqué et validé les méthodes proposées sur plusieurs systèmes open source pour dé-
montrer leur impact sur la qualité de la conception en utilisant des modèles de qualité bien
connus, et les commentaires de certains auteurs des systèmes étudiés.

Mots-clés : Maintenance de logiciels, qualité de conception de logiciel, anti-patrons, refac-
toring, efficacité énergétique.

vii

ABSTRACT

Software maintenance cost is estimated to be more than 70% of the total cost of system,
because of many factors, including new user’s requirements, the adoption of new technolo-
gies and the quality of software systems. From these factors, quality is the one that we can
control and continually improved to prevent degradation of performance and reduction of
effectiveness (a.k.a. design decay). Moreover, to stay competitive, the software industry has
shortened its release cycles to deliver new products and features faster, which results in more
pressure on developer teams and the acceleration of system’s design evolution. One way to
prevent design decay is the identification and correction of anti-patterns which are indica-
tors of poor design quality. To improve design quality and remove anti-patterns, developers
perform small behavior-preserving transformations (a.k.a. refactoring). Manual refactoring is
expensive, as it requires to (1) identify the code entities that need to be refactored; (2) gener-
ate refactoring operations for classes identified in the previous step; (3) find the correct order
of application of the refactorings generated, to maximize the quality effect and to minimize
conflicts. Hence, researchers and practitioners have formulated refactoring as an optimization
problem and use search-based techniques to propose (semi)automated approaches to solve it.

In this dissertation, we propose several approaches to tackle some of the major issues in
existing refactoring tools, to assist developers in their maintenance and quality assurance
activities.

Our thesis is that it is possible to enhance automated refactoring by considering new di-
mensions: (1) developer’s task context to prioritize the refactoring of relevant classes; (2)
testing effort to improve testing cost after refactoring; (3) refactoring’s conflict awareness to
reduce refactoring effort; and (4) energy efficiency to improve energy consumption of mobile
applications after refactoring.

We propose four approaches: (1) ReCon, which leverages developer’s task context to prior-
itize the refactoring of classes that are relevant to the developer’s activity. Using ReCon,
developers can remove a median of 50% of anti-patterns during regular coding tasks, without
disrupting their workflow. (2) RePOR, for an efficient refactoring scheduling, which results
in a reduction of refactoring effort and execution time by 80%. (3) TARF controls for the
testing effort while refactoring. Results show that TARF can reduce a median of 48% of the
testing effort of a system after refactoring. (4) EARMO, is an automated approach for the
refactoring of mobile applications, which is able to remove 84% of anti-patterns and extend
the battery life of devices by up to 29 minutes (for a multimedia app running continuously a

viii

typical scenario).

We apply and validate our proposed approaches on several open-source systems to demon-
strate their impact on design quality using well known quality models, and feedback from
some authors of the systems studied.
Keywords: Software maintenance, design quality, anti-patterns, refactoring, search-based
software engineering, energy efficiency, task context, testing effort.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xv

LIST OF SYMBOLS AND ABBREVIATIONS . xvi

CHAPTER 1 INTRODUCTION . 1
1.1 Research Context: Software Quality . 1
1.2 Problem Statement . 2

1.2.1 Thesis . 3
1.3 Thesis Contributions . 4
1.4 Thesis Organization . 4
1.5 Related Publications . 5

CHAPTER 2 BACKGROUND . 6
2.1 Introduction . 6
2.2 Refactoring . 6

2.2.1 Refactoring Styles . 7
2.2.2 Anti-patterns and refactoring strategies 8
2.2.3 Refactoring Scheduling problem . 10

2.3 Metaheuristic techniques . 11
2.3.1 Simulated Annealing . 11
2.3.2 Genetic Algorithm . 11
2.3.3 Variable Neighborhood Search (VNS) 11
2.3.4 Multiobjective optimization . 12
2.3.5 Non-dominated sorting genetic algorithm (NSGA-II) 13

x

2.3.6 Strength Pareto Evolutionary Algorithm 2 (SPEA2) 13
2.3.7 Multiobjective Cellular Genetic Algorithm (MOCell) 13

2.4 Quality Models . 13

CHAPTER 3 RELATED WORK . 15
3.1 Introduction . 15

3.1.1 Anti-patterns detection . 15
3.1.2 Search-based Refactoring . 16
3.1.3 Other refactoring approaches . 17
3.1.4 Refactoring Scheduling Problem . 17
3.1.5 Management and prioritization of anti-pattern’s correction 18
3.1.6 Testing Strategies . 20
3.1.7 Refactoring of Mobile Apps . 20

CHAPTER 4 USING DEVELOPER’S CONTEXT FOR IMPROVING AUTOMATED
REFACTORING . 24
4.1 Introduction . 24
4.2 Prioritizing refactoring of anti-patterns by leveraging Developer’s Task Context 25
4.3 Approach . 27
4.4 Evaluation . 28

4.4.1 Dependent and Independent Variables 28
4.4.2 Data Collection and Processing . 29
4.4.3 ReCon implementation . 29
4.4.4 Analysis Method . 37
4.4.5 Results of the Experiment . 37

4.5 Discussion . 44
4.6 Threats to validity . 45
4.7 Chapter Summary . 45

CHAPTER 5 EFFICIENT REFACTORING SCHEDULE 47
5.1 Introduction . 47
5.2 Reducing the search-space size of the refactoring scheduling problem 48
5.3 Refactoring approach based on Partial Order Reduction 52

5.3.1 Step 1: Code-design model generation 52
5.3.2 Step 2: Detect Anti-patterns . 53
5.3.3 Step 3: Generate set of refactoring candidates (R) 53
5.3.4 Step 4: Build refactorings dependency graph (GD) 53

xi

5.3.5 Step 5: Find connected components (CCAP) 53
5.3.6 Step 6: Build refactorings conflict graph (GC) 53
5.3.7 Step 7: Schedule a sequence of refactorings (SR) 54

5.4 Case Study . 57
5.4.1 Research Questions . 57
5.4.2 Evaluation Method . 58
5.4.3 RePOR implementation . 60
5.4.4 Ant Colony Optimization Implementation 61
5.4.5 Genetic Algorithm implementation 64
5.4.6 LIU conflict-aware scheduling of refactorings 65

5.5 Results . 67
5.5.1 (RQ1) To what extent can RePOR remove anti-patterns? 67
5.5.2 (RQ2) How does the performance of RePOR compare to those of meta-

heuristics ACO, GA, and the conflict-aware approach LIU from the
literature, for the correction of anti-patterns? 69

5.6 Discussion . 74
5.7 Threats to validity . 77
5.8 Chapter Summary . 78

CHAPTER 6 USING TESTING EFFORT FOR IMPROVING AUTOMATED RE-
FACTORING . 79
6.1 Introduction . 79
6.2 Improving automated refactoring of anti-patterns by leveraging testing effort

estimation . 80
6.2.1 Testing effort measurement . 80

6.3 Testing-Aware Automated Refactoring . 82
6.4 Case Study Design . 84

6.4.1 Parameters of the metaheuristics. 85
6.4.2 Dependent and Independent Variables 86
6.4.3 Research Questions . 86
6.4.4 Analysis Method . 87

6.5 Case Study results . 87
6.5.1 (RQ1) To what extent can TARF correct anti-patterns and reduce

testing effort? . 87
6.6 Threats to validity . 92
6.7 Chapter Summary . 93

xii

CHAPTER 7 IMPROVING AUTOMATED REFACTORING BY CONTROLLING
FOR ENERGY EFFICIENCY . 94
7.1 Introduction . 94

7.1.1 Energy measurement of mobile apps 96
7.2 Preliminary Study . 98

7.2.1 Design of the Preliminary Study . 99
7.2.2 Data Extraction . 100
7.2.3 Data Analysis . 104
7.2.4 Results and Discussion of the Preliminary Study 105

7.3 Energy-Aware Automated Refactoring of Mobile Apps 108
7.3.1 EARMO overview . 109
7.3.2 Step 1: Energy consumption estimation 110
7.3.3 Step 2: Code meta-model generation 110
7.3.4 Step 3: Code meta-model assessment 110
7.3.5 Step 4: Generation of optimal set of refactoring sequences 111

7.4 Evaluation of EARMO . 113
7.4.1 Descriptive statistics of the studied Apps 114
7.4.2 Research Questions . 114
7.4.3 Evaluation Method . 117
7.4.4 Results of the Evaluation . 119

7.5 Threats to validity . 136
7.6 Chapter Summary . 138

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 140
8.1 Advancement of knowledge . 140

8.1.1 Improving automated refactoring using developer’s task context . . . 140
8.1.2 Improving automated refactoring through efficient scheduling 141
8.1.3 Improving automated refactoring by considering testing effort 141
8.1.4 Improving automated refactoring of mobile apps by controlling for en-

ergy efficiency . 142
8.2 Recommendations and future work . 142

8.2.1 Automated Refactoring of testing artifacts 142
8.2.2 Improving automated refactoring by considering code lexicon 143
8.2.3 Evaluating the usefulness of automated approaches 143

8.3 Final remarks . 144

REFERENCES . 145

xiii

LIST OF TABLES

Table 2.1 List of studied Anti-patterns. 9
Table 2.2 QMOOD Evaluation Functions. 14
Table 4.1 Event Types from Mylyn. 26
Table 4.2 Descriptive statistics of the studied Eclipse projects. 28
Table 4.3 Representation of a refactoring sequence. 34
Table 4.4 Count of anti-patterns after applying floss refactoring. 40
Table 4.5 Resources usage for root-canal using SA. 42
Table 5.1 List of refactorings candidates for the example from Listing 5.1 51
Table 5.2 Enumeration of possible refactoring sequences for the set of refactoring

operations {r1, r2, r3}. 51
Table 5.3 Descriptive statistics about the studied systems. 60
Table 5.4 Number of refactoring candidates automatically generated for each

studied system. 60
Table 5.5 Parameters of the Ant Colony Optmization algorithm for refactoring

scheduling. 64
Table 5.6 Design Improvement (%) in general and for different anti-pattern types. 68
Table 5.7 Pair-wise Mann-Whitney U Test test for design improvement. 69
Table 5.8 Median performance metrics for each system, metaheuristic studied. 70
Table 5.9 Statistics of the connected components (CCAP) in GD from the stud-

ied systems . 71
Table 5.10 Median count of refactorings applied for each system, refactoring scheme,

by type. 74
Table 5.11 Pair-wise Mann-Whitney U Test test for performance metrics. 75
Table 6.1 Descriptive statistics of the studied systems. 84
Table 6.2 Median count of anti-patterns removed, and number of test cases after

refactoring. 89
Table 6.3 Quality indicators: Mean and standard deviation 91
Table 6.4 Wilcoxon rank-sum test for HV indicator. 91
Table 7.1 Apps used to conduct the preliminary study on Anti-patterns and En-

ergy consumption. 100
Table 7.2 Description and duration (in seconds) of scenarios generated for the

studied apps in our preliminary study. 102

xiv

Table 7.3 Percentage change in median energy consumption of apps after remov-
ing one instance of anti-pattern at time, Mann—Whitney U Test and
Cliff′s δ Effect Size (ES). 107

Table 7.4 Descriptive statistics showing anti-pattern occurrences in the studied
apps. 116

Table 7.5 Deltas of energy consumption by refactoring type. 119
Table 7.6 Minimum and maximum values (%) of DI and EI obtained for each

app after applying EARMO. 121
Table 7.7 Median values of anti-patterns corrected by type (%). 122
Table 7.8 Hypervolume. Median and IQR. 124
Table 7.9 Spread. Median and IQR. 124
Table 7.10 Pair-wise Whitney U Test test for HV and Spread indicators. 124
Table 7.11 Description of scenarios generated for the EC validation and duration

(in seconds). 126
Table 7.12 Summary of manual refactoring application for the EC validation. . . 128
Table 7.13 EARMO execution time (seconds), EC estimation (J), median energy

consumption E0 and E ′ (J), γ values, statistical tests, and difference
in battery life (minutes). 130

Table 7.14 Quality gain achieved by EARMO on QMOOD quality attributes. . . 132
Table 7.15 Background information on the surveyed developers. 133

xv

LIST OF FIGURES

Figure 4.1 Workflow of ReCon. 27
Figure 4.2 An example of Lazy class and its corresponding refactoring. 31
Figure 4.3 An example of Long-parameter list constructor detected in Mylyn. . . 32
Figure 4.4 An example of Speculative Generality anti-pattern. 33
Figure 4.5 Example of perturbation operator . 35
Figure 4.6 Example of crossover operator . 36
Figure 4.7 Distribution of anti-pattern’s occurrences before and after refactoring

based on task context. 38
Figure 4.8 Anti-patterns occurrences after applying floss and root canal refactoring. 41
Figure 4.9 Resources consumption for each Algorithm when performing floss refac-

toring. 42
Figure 4.10 The impact of the best refactoring solutions on QMOOD quality at-

tributes. 43
Figure 5.1 Quality evolution of the refactoring solutions with respect to time. . . 73
Figure 6.1 The Pareto reference front of JHotDraw. 88
Figure 6.2 The quality gain of the best refactoring solutions on QMOOD quality

attributes. 91
Figure 7.1 Connection between power supply and the Nexus 4 phone. 98
Figure 7.2 Data extraction process. 100
Figure 7.3 Android App flow-chart . 104
Figure 7.4 Percentage change in median energy consumption when removing dif-

ferent types of anti-patterns . 106
Figure 7.5 An example of applying RIWD in a class. Original class diagram on

the left, and refactored class diagram on the right. 114
Figure 7.6 Example of inline private getters and setters refactoring. Original code

on the left, and refactored code on the right. 115
Figure 7.7 Example of replacing HashMap with ArrayMap refactoring. Original

code on the left, and refactored code on the right. 115
Figure 7.8 Distribution of anti-patterns and energy consumption reduction in the

studied apps. 121
Figure 7.9 Pareto front of apps with more than one non-dominated solution. . . 122
Figure 7.10 Acceptance ratio of the refactorings proposed by EARMO. 134

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

EMO Evolutionary Multiobjective Optimization
GA Genetic Algorithm
EARMO Energy-Aware Refactoring approach for MObile apps
EAs Evolutionary Algorithms
ECG Enhanced Call-graph
HV Hypervolume
IDE Integrated Development Environment
IH Interaction Histories
MaDUM Minimal Data members Usage Matrix
MO Multiobjective optimization
MOCell Multiobjective Cellular Genetic Algorithm
NSGA-II Non-dominated sorting genetic algorithm
OO Object-Oriented
OSS Open-Source Systems
PADL Pattern and Abstract-level Description Language
QMOOD Quality Model for Object-Oriented Design
ReCon Refactoring approach based on task Context
RePOR Refactoring approach based on Partial Order Reduction
SA Simulated Annealing
SAD Software Architectural Defects
SBSE Search-Based Software Engineering
SPEA2 The Strength Pareto Evolutionary Algorithm 2
TARF Testing-Aware ReFactoring approach
VCS Version Control System
VNS Variable Neighborhood Search

1

CHAPTER 1 INTRODUCTION

1.1 Research Context: Software Quality

Software maintenance is defined as the process of modifying a software system in order to
add new features, correct faults or improve functionality. In previous studies [1], the cost of
software maintenance has been estimated to be more than 70% of the total cost of a software.
Thus, researchers have focused their effort on studying the quality of software systems and
proposed metrics and methodologies to assess it.

As systems evolve, they tend to grow in complexity and degrade in effectiveness [2], unless the
quality of the systems is controlled and continually improved. This phenomenon is known as
design decay. When the design of a system is poor, new changes to the system often degrade
quality instead of improving it. Some indicators of poor design quality are anti-patterns [3],
which are symptoms of bad design-choices that makes it hard to understand, modify and
extend a software system. The presence of anti-patterns in a system increases the risk of
faults [4] and the cost of future maintenance. They are not technically incorrect, but result
in negative consequences in the long run [5]. An example of anti-pattern is Spaghetti Code,
which is a class without structure that declares long methods without parameters [6]. This
anti-pattern depicts an abuse of procedural programming in object-oriented systems, that
prevents code reuse. In a previous study, Bavota et al. [7] found that industrial developers
assign a very high severity level to this anti-pattern. Another example of anti-pattern is
the Lazy class, which is a class with a few methods and a low complexity that does not
“pay off” its inclusion in the system. Abbès et al. [8] showed that anti-patterns affect the
understandability of systems and Khomh et al. [4] found that there is a strong correlation
between the occurrence of anti-patterns and the fault-proneness of source code files. In
addition to this, the length of time that an anti-pattern can remain in a system after its
introduction for the first time is uncertain, though there is evidence to suggest that they
tend to linger for several releases [9, 10]. It is therefore advisable to correct anti-patterns on
a regular basis, to avoid their negative impact on future releases of the system.

To combat design decay and remove anti-patterns, practitioners perform refactoring [11, 12],
which is the process of reorganizing, and rewriting existing code, without altering its original
behavior. Several studies have assessed the benefits of refactorings, both in academic and
industrial settings. Rompaeyet al. [13] report a significant reduction over 50% of memory
usage, and 33% startup time improvement in a telecommunication company after performing
refactoring. In another study including several revisions of an open source system, Soetens

2

and Demeyer [14] found that most refactorings tend to reduce the Cyclomatic complexity [15],
especially when they target duplicate code. Du Bois et al. [16], performed an experiment
with students and observed that refactoring God classes improves the comprehensibility of
the source code. In an industrial setting at Microsoft, Kim et al. [17] found that modules
that underwent refactoring have less inter-module dependencies and less post-release faults.

The drawback to refactoring is the high cost incurred when performing it manually. First,
it is necessary to identify classes and code fragments that need to be improved. Then, we
determine which refactorings should be applied to the identified places, considering that
some refactorings may enable or block further refactorings. Hence, this selection determines
the quality improvement effect achieved in a refactoring session. Since quality is a difficult
attribute to measure (it can be interpreted in different ways), companies do not assign enough
resources to improve it [18, 19]. Moreover, big organizations and companies like Mozilla and
Google have shorted their release cycles to be more competitive, reducing even more the
already limited budget assigned for performing software maintenance tasks [20].

To provide a solution for the complex task of manual refactoring, researchers have formulated
refactoring as a combinatorial optimization problem and applied search-based techniques to
solve it [21]. The idea is to generate a sequence of refactoring operations that should be
applied by developers to improve software design quality. Some of these works formulated
refactoring as a single-objective optimization problem in which the main goal is to improve
design quality [22, 23, 24, 25]. Other works have considered additional objectives like control-
ling code semantic [26] and using development history [27]. However, the use of development
history and semantic information are not the only sources of information that one can use
to support refactoring activity. We believe that search-based refactoring can be improved by
considering other dimensions like developer’s task context, testing effort, energy efficiency,
etc.

1.2 Problem Statement

Some problems with existing semi-automated refactoring approaches are the following.

1. Developers have to review a long list of refactoring operations due to the lack of con-
text. For example, developers working in a specific module or subproject might not be
interested in modify classes out of their context, or beyond their code ownership.

2. The cost of applying the refactoring solutions proposed is too high, compared to the
possible benefits for the long term. For example, if the refactoring solutions proposed
by a tool, require to dramatically change the existing design, in a sense that the devel-

3

oper team is not longer familiar with it, or add excessive effort to maintain and test,
developers will dismiss the proposed solutions.

3. An approach requires to provide complex inputs, beside the system to be refactored.
For example, a tool that require developers to gather an oracle of bad design examples
to generate useful solutions it is likely to discourage developers to adopt it. Indeed,
Murphy et al. found that developers tend to use default parameters of refactoring tools
and avoid tools with complex settings and inputs [28].

4. The refactorings solutions proposed do not consider all critical concerns of the software
system domain. For example, energy concerns which are very relevant in embedded
and mobile systems domain. Hence, refactoring solutions that do not control for energy
concerns, are likely to be dismissed by developers working on these domains.

Note that this is not an exhaustive list, but it gives an indication of several points for
improvement.

In this dissertation, we proposed different approaches to improve search-based refactoring
with respect to various dimensions (e.g., developer’s task context, refactoring effort, test-
ing effort, energy efficiency) to overcome the problems mentioned above. We aim to make
refactoring cheaper and useful to software developers and maintainers. Thus, our thesis is:

1.2.1 Thesis

�

�

�

Search-based refactoring can be readily used for automatically improving software design
quality while (1) cutting the cost of anti-patterns detection and correction; (2) making
more efficient use of computational resources than existing approaches; and (3) providing
useful solutions from developer’s perspective

To reduce the number of refactoring candidates that a developer has to review from an auto-
mated approach, we propose the use of developers’ task context to prioritize the refactoring
of relevant classes during maintenance activities and in code review sessions. This is a more
natural approach and follows the recommendations of agile development practices like XP
(extreme programming), that encourage developers to perform refactoring incrementally [29]
and do not postpone it until becomes very expensive.

To reduce the cost of refactoring while preserving the quality improvement effect, we propose
to define a refactoring order that considers conflicts and removes redundant solutions.

4

Moreover, after developers are satisfied with the quality improvement achieved by an automated-
refactoring tool, one still needs to asses the effect of the refactoring activity on other non-
functional properties of a system. For example, what is the current cost of testing a system
that has undergone a complete design overhaul? And how does it compare to the cost of
testing the initial system design? To address this issue, we propose a refactoring approach
that considers testing effort along with design quality improvement.

From the domain of embedded systems and mobile platforms, recent studies [30, 31, 32] have
raised concern about the effect of software design quality on energy efficiency. Therefore,
mobile application’s developers have to consider the effect of design choices not only in terms
of object-oriented design quality, but to improve energy efficiency of their applications. To
address this concern, we propose an appropriate method to measure energy consumption,
and to control for energy efficiency of the refactored designs.

1.3 Thesis Contributions

All the refactoring approaches proposed in this dissertation target instances of the same
problem looking at different dimensions and can be summarized as follows.

1. An automated refactoring approach that leverages task context to prioritize the cor-
rection of anti-patterns in relevant classes.

2. An automated refactoring approach, based on partial order reduction, to reduce the
search-space size of the problem.

3. A multiobjective automated refactoring approach that considers testing effort and de-
sign quality.

4. A multiobjective automated refactoring approach that considers energy efficiency and
design quality in mobile apps.

5. An Eclipse plug-in to automatically detect and correct software anti-patterns that can
be used by developers to improve the design quality of their systems.

1.4 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides background in-
formation, while chapter 3 surveys related work on anti-pattern’s detection, refactoring, and
the new dimensions proposed in this dissertation to enhance automated refactoring. Chap-
ter 4 presents an automated refactoring approach that prioritize the refactoring of relevant
classes by considering developer’s task context. Chapter 5 presents an automated refactoring

5

approach based on partial order reduction to reduce refactoring search-space; the proposed
approach is implemented as an Eclipse plug-in and publicly released. While Chapters 4,
5 present single objective approaches, the rest of the dissertation (Chapters 6, 7) focuses
on multiobjective approaches that combine design improvement with other quality dimen-
sions. Specifically, Chapter 6 presents a multiobjective automated refactoring approach that
considers testing effort and design improvement. Chapter 7 presents a multiobjective au-
tomated refactoring approach for mobile apps, that considers energy efficiency and design
improvement. Finally, Chapter 8 draws conclusions and outlines avenues for future works.

1.5 Related Publications

The research and findings presented in this dissertation resulted in several publications and
can be traced in various chapters as follows.

- All - Morales, R, Chicano, F., Khomh, F., Antoniol, G. (2017). Exact search-space size
for the refactoring scheduling problem. Automated Software Engineering. DOI:s10515-
017-0213-6.

Ch. 4 Morales, R., Soh, Z., Khomh, F., Antoniol, G., Chicano, F. (2017) On the use of
developers’ context for automatic refactoring of software anti-patterns. Journal of
Systems and Software 128, (2017): 236-251. DOI:10.1016/j.jss.2016.05.042.

Ch. 5 Morales, R, Chicano, F., Khomh, F., Antoniol, G. (2017). Efficient Refactoring
Scheduling based on Partial Order Reduction. Journal of Systems and Software. Under
review.

Ch. 6 Morales, R, Sabane, A., Musavi, P., Khomh, F., Chicano, F., Antoniol, G. (2016).
Finding the Best Compromise Between Design Quality and Testing Effort During Refac-
toring. Paper presented at the 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). DOI:10.1109/SANER.2016.23.

Ch. 7 Morales, R., Saborido, R., Khomh, F., Chicano, F., & Antoniol, G. (2017). EARMO:
An Energy-Aware Refactoring Approach for Mobile Apps. Transactions on Software
Engineering. DOI:10.1109/TSE.2017.2757486.

The following publication is not directly related to the material in this dissertation, but it
was produced in parallel to the research contained for this dissertation.
— Morales, R., McIntosh, S., Khomh, F. (2015). Do Code Review Practices Impact

Design Quality? A Case Study of the Qt, VTK, and ITK Projects. Paper presented
at the 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). DOI:10.1109/SANER.2015.7081827 .

6

CHAPTER 2 BACKGROUND

2.1 Introduction

In this chapter, we provide the necessary background for software refactoring, anti-patterns,
refactoring styles, refactoring scheduling problem, metaheuristic techniques, multiobjective
optimization, and quality models. This chapter is aimed at readers who are unfamiliar with
these concepts.

2.2 Refactoring

Refactoring is a software maintenance activity for improving code internal structure, while
preserving its external behavior [11]. In the last decade, many works have reported that
refactoring can reduce software complexity, improve developer comprehensibility and also
improve memory efficiency and start-up time [16, 13]. Hence, developers are advised to
perform refactoring operations on a regular basis [33]. According to Mens et al. [34], we can
divide the refactoring process in the following steps:

1. Identify the code entities that need to be refactored. In this dissertation we use
the term code entities to refer to classes as we focus on object-oriented systems. The
most widely-use approach to detect code entities that need refactoring (including this
dissertation) is the detection of anti-patterns and/or code smells [34]. Anti-patterns are
poor design choices [3] to recurring design problems. Typically, they are introduced
by inexperienced developers, and represent common pitfalls in software development.
According to Coplien and Harrison [5], they are “something that looks like a good idea,
but which backfires badly when applied”. The difference between anti-patterns and
code smells is that the latter ones are local problems which indicate the presence of
more general design problems (i.e., anti-patterns). For example, Long Methods, Large
class, Low cohesion are just a few symptoms of a Blob Class anti-pattern [33]. Note
that the use of anti-patterns to identify code entities to be refactored vary according to
the domain of the applications. For example, if we focus on mobile and/or embedded
systems, we might consider anti-patterns related to energy efficiency in addition to
traditional design anti-patterns, to provide a complete design solution.

2. Determine which are the most suitable refactorings to be applied. Fowler pro-
posed a catalog of 22 refactorings and informally linked anti-patterns to refactorings [33]
These informal guidelines have been adapted in previous works to generate refactoring

7

opportunities to remove anti-patterns [35, 36, 37] in a semi-automated fashion.

3. Ensure that the applied refactorings preserve behavior. Typically, existing
refactoring approaches followed the refactoring pre- and post- conditions proposed by
Opdyke [11] to preserve the behavior of the refactored system.

4. Measure the effect of the refactorings applied on desired quality attributes
(e.g., understandability, flexibility, complexity, etc.). “You can’t control what
you can’t measure” [38]. Once we applied a set of refactorings, we should be able to
assess its impact on design quality. Typically, researchers use code and object oriented
metric suites [39, 40], and anti-pattern’s/design patterns occurrences [41] to evaluate
design improvement.

5. Maintain consistency between software design and other software artifacts
(e.g., documentation, tests, etc.). After applying and evaluating a set of refac-
torings, the risk of impacting the consistency between source code and other software
artifacts including test suite, design models and documentation is high. Hence, it is
recommendable to count with mechanisms to keep their consistency.

The focus of this dissertation and the derived approaches, cover the first 5 steps, while
step 6 (the link with other software artifacts) is left to future work. As refactoring have
a direct impact on source code, software artifacts like design models (in the form of UML
class diagrams), and unit test suites are mainly affected. The former ones could be directly
regenerated from the refactored source code using the tool support included in most popular
IDEs (e.g., Eclipse, Visual Studio, etc.), while the latter one is a current research area.

2.2.1 Refactoring Styles

In general, developers follow two main refactoring styles [28]: floss refactoring and root-canal
refactoring. Floss refactoring consists in applying refactoring to the code while performing
other development or maintenance activities, e.g., adding new features, or fixing a bug. In the
floss refactoring strategy, the refactoring of the code is not the main goal; developers combine
different types of code changes with refactoring. In the case of root-canal refactoring, devel-
opers perform the refactoring of the code exclusively. Floss refactoring is a recommended and
a common strategy followed by developers according to previous works [28, 42]. However,
automating floss refactoring is challenging. So far, existing approaches perform anti-patterns
detection on the whole program, and provide a final solution comprised of a set of low-level
refactorings which have to be applied (sometimes on classes unknown from the developer) in
order to improve the quality [43, 44, 45]. Other approaches, consider more than one objective
when refactoring, e.g., semantic-similarity [26] and historical information [46] but still pro-

8

pose a long sequence of refactorings that often affect classes unknown to developers. These
previous approaches are more suitable for root-canal refactoring sessions, where developers
set aside a dedicated session just for refactoring.

2.2.2 Anti-patterns and refactoring strategies

In this dissertation we study the occurrences of different anti-patterns types for Object-
oriented (OO) and Android Open-Source Systems (OSS), and propose different refactoring
approaches to improve design quality by correcting them.

We present in Table 2.1 details of the considered anti-pattern types and the refactoring
strategies used to remove them.

To detect anti-patterns, we use DECOR, which is an anti-pattern detection approach, known
to attain a good level of precision [52]. DECOR uses a set of rules defined in a domain
specific language (DSL) to characterize anti-patterns. These rules are derived from metrics,
structural and semantic properties.

In Listing 2.1, we present an example of the Blob detection rule card. The detection of a Blob
is the result of the association of a mainclass to one or more DataClass(es) (line 2). To detect
the main class (i.e., the Blob class) the rule used is the result of the union between Large-
ClassLowCohesion, and ControllerClass rules (line 3-6). The union operator is interpreted
as logic OR. LargeClassLowcohesion is the application of the union operator to LargeClass
and LowCohesion. LargeClass is measured by adding number of methods plus number of
attributes (NMD+NAD); LowCohesion is measured using Lack of Cohesion Among Method
of Class (LCOM5) metric [39], which measures the extent of intersections between individ-
ual method parameter types lists and the parameter type list of all methods in the class.
Very high is an ordinal value (e.g., very high, high, medium, low etc.) that represents a
threshold value for identifying classes that deviate from the rest of the system. These values
are computed using the box-plot statistical technique [53] to relate ordinal values with con-
crete metric values while avoiding setting artificial thresholds. The number after the ordinal
value (i.e., VERY_HIGH) represents the degree of fuzziness, which is the acceptable margin
around the threshold relative to the ordinal value (line 5,6). The Blob rule card also includes
a lexical property, that is the vocabulary used to name the methods and the class (line 8-11),
i.e., using words like Process, Control, etc. Finally, it is necessary that the mainClass be
associated to one or more data class(es). A data class is a class where the accesor ratio
(number of accessors/number of methods) is greater or equal to 90% (line 12).

1. https://source.android.com/devices/tech/

https://source.android.com/devices/tech/

9

Table 2.1 List of studied Anti-patterns.
Type Description Refactoring(s) strategy

Object-oriented anti-patterns
Blob (BL) [3] A large class that absorbs most of the functionality

of the system with very low cohesion between its con-
stituents.

Move method (MM). Move the methods
that does not seem to fit in the Blob class
abstraction to more appropriate classes [44].

Lazy Class (LC) [47] Small classes with low complexity that do not justify
their existence in the system.

Inline class (IC). Move the attributes and
methods of the LC to another class in the
system.

Long-parameter list
(LP) [47]

A class with one or more methods having a long list
of parameters, specially when two or more methods are
sharing a long list of parameters that are semantically
connected.

Introduce parameter-object (IPO). Extract
a new class with the long list of parame-
ters and replace the method signature by a
reference to the new object created. Then
access to this parameters through the pa-
rameter object

Refused Bequest
(RB) [47]

A subclass uses only a very limited functionality of the
parent class.

Replace inheritance with delegation
(RIWD). Remove the inheritance from the
RB class and replace it with delegation
through using an object instance of the
parent class.

Spaghetti Code (SC) [3] A class without structure that declares long methods
without parameters

Extract Super Class, Replace method with
method object. Extract long methods to
new classes and extract a super class with
the attributes and methods shared by the
SC class and the new extracted classes

Speculative Generality
(SG) [47]

There is an abstract class created to anticipate further
features, but it is only extended by one class adding
extra complexity to the design.

Collapse hierarchy (CH). Move the at-
tributes and methods of the child class to
the parent and remove the abstract modi-
fier.

Android anti-patterns
Binding Resources too
early (BE) [48]

Refers to the initialization of high-energy-consumption
components of the device, e.g., GPS, Wi-Fi before they
can be used.

Move resource request to visible method
(MRM). Move the method calls that ini-
tialize the devices to a suitable Android
event. For example, move method call
for requestlocationUpdates, which starts
GPS device, after the device is visible to
the app/user (OnResume method).

HashMap usage
(HMU) [49]

From API 19, Android platform provides Ar-
rayMap [50] which is an enhanced version of the stan-
dard Java HashMap data structure in terms of memory
usage. According to Android documentation, it can ef-
fectively reduce the growth of the size of these arrays
when used in maps holding up to hundreds of items.

Replace HashMap with ArrayMap (RHA).
Import ArrayMap and replace HashMap
declarations with ArrayMap data structure.

Private getters and set-
ters (PGS) [49, 51]

Refers to the use of private getters and setters to ac-
cess a field inside a class decreasing the performance of
the app because of simple inlining of Android virtual
machine 1 that translates this call to a virtual method
called, which is up to seven times slower than direct
field access.

Inline private getters and setters (IGS). In-
line the private methods and replace the
method calls with direct field access.

Listing 2.1 Rule card of Blob anti-pattern from DECOR
1 RULE_CARD : Blob {
2 RULE : Blob { ASSOC : associated FROM: mainClass ONE TO: DataClass MANY };
3 RULE : mainClass { UNION LargeClassLowCohesion ControllerClass };
4 RULE : LargeClassLowCohesion { UNION LargeClass LowCohesion };
5 RULE : LargeClass { (METRIC : NMD + NAD , VERY_HIGH , 0) };
6 RULE : LowCohesion { (METRIC : LCOM5 , VERY_HIGH , 20) };
7 RULE : ControllerClass { UNION (SEMANTIC : METHODNAME , {Process , Control , Ctrl , Command

, Cmd , Proc , UI , Manage , Drive }) , (SEMANTIC : CLASSNAME , {Process , Control , Ctrl ,
Command , Cmd , Proc , UI , Manage , Drive , System , Subsystem }) };

8 RULE : DataClass { (STRUCT : METHOD_ACCESSOR , 90) }; };

10

2.2.3 Refactoring Scheduling problem

Manual refactoring is a complicated task, as there could be more than one solution depending
on the design quality attributes that one is interested to improve. Moreover, the applica-
tion order of refactoring operations matters, as some refactorings can enabled/disable future
refactorings. Hence, finding the right sequence of refactorings to apply on a software system
is usually a hard task for which no polynomial-time algorithm is known.

We define the refactoring scheduling problem as an optimization problem which consists of
finding the best combination of refactorings that maximize the design quality improvement
of a software system. This problem can be solved using search-based techniques [54], and the
discipline that studies how to apply search based techniques to solving engineering problems
is known as Search-Based Software Engineering (SBSE).

Search algorithms typically start by generating one or more random sequences. Next, the
quality of each sequence is computed by applying it to the software system in question, and
measuring the improvement in the quality attributes of interest using an objective function
(a.k.a.fitness function). For example, imagine that we have a set of refactorings: R = {A,B}
to be scheduled. According to our previous work [55], we find that the number of refactoring
sequences (S) that we could generate having n refactoring operations is given by Equation 2.1.

S =

 be · n!c ∀n ≥ 1
1 n = 0

(2.1)

Applying Equation 2.1 to our example gives us 5 possible sequences (be · 2!c = 5): <>,
< A >, < B >, < A,B >, < B,A >, if and only if (iff) we assume that each permutation
leads to a different solution. Here the term solution refers to the outcome of applying a refac-
toring sequence to a system, i.e., the resultant design. Otherwise, < A,B > is commutative
and equivalent to < B,A >, then only 4 different solutions exist.

In the case of refactorings that affect the same class, the resultant design may vary depending
on the order of application of the refactorings, as the application of one refactoring can enable
or disable the rest of refactorings.

One of the theoretical contributions of this dissertation, is providing an exact expression to
accurately compute the size of the search-space of the refactoring scheduling problem [55].
We leverage this formulation to propose new automated refactoring approaches that target
different dimensions: refactoring prioritization using developer’s task context, refactoring
search-space size and effort reduction, testing effort reduction, and energy efficiency im-
provement. Chapters 4 to 7 deal with the aforementioned dimensions.

11

2.3 Metaheuristic techniques

One key component of the approaches presented in this dissertation are meta-heuristic tech-
niques. Depending on the number of parameters, the scope (local or global search) and
convergence time, the results may vary and can have an impact on the execution time and
the solution’s quality. Hence, to provide an insight into which metaheuristics are most ef-
fective using automated refactoring, we present the most relevant mono and multiobjective
techniques.

2.3.1 Simulated Annealing

It is a metaheuristic technique [56] that imitates the process of metal annealing, by allowing
movements of worse quality than the current solution, with a probability that decreases during
the search process (when the temperature goes down), until only good quality solutions
are accepted. In the first step, the probability toward improvement is low, allowing the
exploration of the search space (consequently escaping from local optima), but this behavior
changes gradually according to the cooling schedule which is crucial for the performance
of the algorithm. The movements between designs are achieved by perturbing the current
solution, generally a random one.

2.3.2 Genetic Algorithm

It is a type of evolutionary algorithm [57, 58], where a group of candidate solutions, called
individuals or chromosomes are modified through some variation operators, i.e., crossover,
and mutation, in order to create new solutions. The selection operator selects the best solu-
tions of each iteration (generation). The search process is guided by an evaluation function,
a.k.a. fitness function, which assess the fitness of each individual. GA is a population-based
algorithm, because it works with several solutions at the same time, contrary to trajectory-
based methods like hill-climbing and simulated annealing that work with only one solution
at a time.

2.3.3 Variable Neighborhood Search (VNS)

It consists of dynamically changing the neighborhood structures defined at the beginning
of the search [59], which expands until a stopping condition is met. In its first step, a
solution in the kth neighborhood (where k = 1 . . . kmax represents a neighborhood structure)
is randomly selected and altered (shaking phase). Then, a process of local search starts
from this point independently of the neighborhood structures. If the outcome solution of the

12

local search is better than the current solution, the first one is replaced by the new solution
and the process restarts at the first neighborhood, otherwise k is incremented and a new
shaking phase is started from a new neighborhood. The advantage of this metaheuristic is
that (1) it provides diversification when changing neighborhoods in case of no improvement,
(2) choosing a solution in the neighborhood of the best solution yields to preserving good
features of the current one. For the evaluation of the approach proposed in chapter 4, the
shaking phase consists of modifying i refactoring operations from the end of the sequence,
until we reach the starting point. The local search mechanism is responsible of applying all
the possible variations to the candidate solutions and selecting the best local optima.

2.3.4 Multiobjective optimization

Optimization problems with more than one objective do not have single solutions because
the objectives are usually in conflict. Consequently, the goal in these problems is to find a
set of solutions that are non-dominated, in the sense that there is no solution which is better
with respect to one of the objective functions without achieving a worse value in at least
another one.

More formally, let y1 and y2 be two solutions, for a multiobjective maximization problem,
and fi, i ∈ 1 . . . n the set of objectives. The solution y1 dominates y2 if: ∀i, fi(y2) ≤ fi(y1),
and ∃j|fj(y2) < fj(y1).

The use of multiobjective algorithms have shown to be useful in finding good solutions in a
search space. There is even a procedure called multi-objectivization that transforms a single-
objective problem into a multiobjective one, by adding some helper functions [60]. Hence, the
use of multiobjective optimization techniques is suitable to solve the refactoring scheduling
problem as they lessen the need for complex combinations of different, potentially conflicting,
objectives and allow software maintainers to evaluate different candidate solutions to find the
best trade-off.

The set of all non-dominated solutions is called the Pareto Optimal Set and its image in the
objective space is called Pareto Front. Very often, the search of the Pareto Front is NP-
hard [61], hence researchers focus on finding an approximation set or reference front (RF) as
close as possible to the Pareto Front.

Chapters 6, and 7 formulate the problem of refactoring as a multiobjective optimization prob-
lem, to improve the design quality, while controlling for other quality attributes like testing
effort and energy consumption. To solve these problems, we use Evolutionary Multiobjective
Optimization (EMO) algorithms, a family of metaheuristic techniques that are known to

13

perform well handling multiobjective optimization problems [62].

We provide a brief description of the EMO used in this dissertation below.

2.3.5 Non-dominated sorting genetic algorithm (NSGA-II)

NSGA-II [63] proceeds by evolving a new population from an initial population, applying
variation operators like crossover and mutation. Then, it merges the candidate solutions from
both populations and sorts them according to their rank, extracting the best candidates to
create the next generation. If there is a conflict when selecting individuals with the same
ranking, the conflict is solved using a measure of density in the neighborhood, a.k.a. crowding
distance.

2.3.6 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

SPEA2 [64] uses variation operators to evolve a population, like NSGA-II, but with the
addition of an external archive. The archive is a set of non-dominated solutions, and it is
updated during the iteration process to maintain the characteristics of the non-dominated
front. In SPEA2, each solution is assigned a fitness value that is the sum of its strength
fitness plus a density estimation.

2.3.7 Multiobjective Cellular Genetic Algorithm (MOCell)

It is a cellular algorithm [65], that includes an external archive like SPEA2 to store the
non-dominated solutions found during the search process. It uses the crowding distance of
NSGA-II to maintain the diversity in the Pareto front. Note that the version used in this
dissertation is an asynchronous version of MOCell called aMOCell4 [66]. The selection con-
sists in taking individuals from the neighborhood of the current solution (cells) and selecting
another one randomly from the archive. After applying the variation operators, the new
offspring is compared with the current solution and replaces the current solution if both are
non-dominated, otherwise the worst individual in the neighborhood will be replaced by the
offspring.

2.4 Quality Models

Many quality models have been proposed to assess the quality of OO systems. A quality
model is a set of quality attributes related to a set of metrics. The main purpose of quality
models is to facilitate the continuous improvement of a software system [67, 68]. In this

14

dissertation we use Quality Model for Object-Oriented design (QMOOD) [40] to evaluate the
design quality of a system before and after refactoring. QMOOD defines six design quality
attributes in the form of metric-quotient weighted formulas that can be easily computed on
the design model of a software system, which makes it suitable for automated-refactoring
experimentations. Another reason for choosing the QMOOD quality model is the fact that
it has been used in many previous works on refactoring [44, 45, 69], which allows for a
replication and comparison of the obtained results.

We present a brief description of the quality attributes used in this study.

— Reusability: the degree to which a software module or other work product can be used
in more than one software program or software system.

— Flexibility: the ease with which a system or component can be modified for use in apps
or environments other than those for which it was specifically designed.

— Understandability: the properties of a design that enables it to be easily learned and
comprehended. This directly relates to the complexity of the design structure.

— Effectiveness: the design’s ability to achieve desired functionality and behavior using
OO concepts.

— Extendibility: The degree to which an app can be modified to increase its storage or
functional capacity.

Formulas for computing these quality attributes are described in Table 2.2. In this work
we do not consider the functionality quality attribute because refactoring being a behavior-
preserving maintenance activity, should not impact the functionality of a software system.

Table 2.2 QMOOD Evaluation Functions.
Quality Attribute Quality Attribute Calculation
Reusability -0.25 * DCC + 0.25 * CAM + 0.5 * CIS + 0.5 * DSC
Flexibility 0.25 * DAM - 0.25 * DCC + 0.5 * MOA +0.5 * NOP
Understandability -0.33 * ANA + 0.33 * DAM - 0.33 * DCC + 0.33 * CAM -0.33 * NOP - 0.33 * NOM - 0.33 *

DSC
Effectiveness 0.2 * ANA + 0.2 * DAM + 0.2 * MOA + 0.2 * MFA + 0.2 * NOP
Extendibility 0.5 * ANA -0.5 * DCC + 0.5 * MFA + 0.5 * NOP
where DSC is design size, NOM is number of methods, DCC is coupling, NOP is polymorphism, NOH is number of hierarchies,
CAM is cohesion among methods, ANA is avg. num. of ancestors, DAM is data access metric, MOA is measure of aggregation,
MFA is measure of functional abstraction, and CIS is class interface size.

15

CHAPTER 3 RELATED WORK

3.1 Introduction

In this chapter, we survey the most relevant research work related to this dissertation, which
includes anti-patterns detection, refactoring, and the four themes studied in this dissertation:
developer’s task context, refactoring scheduling problem, testing effort, and energy efficiency
of mobile apps.

3.1.1 Anti-patterns detection

Concerning the detection of anti-patterns, we present the following representative works.

Marinescu [70] proposed a metric-based approach to detect anti-patterns capturing deviations
from “good design principles” through a set of rules comprised of metrics joined by set
operators and relative thresholds. Munro [71] presented a similar rules and metrics-based
approach to detect code smells, and evaluated the selected metrics and threshold values
through an empirical study.

Moha et al. proposed a domain-specific language to characterize anti-patterns based on a
literature review of existing work. They also proposed algorithms and a platform to automat-
ically convert specifications into detection algorithms to apply in a software system. They
achieved good precision and a perfect recall [52].

Khomh et al. proposed a Bayesian approach to account for the uncertainty of the loosely
specified definitions of anti-patterns. By computing the probability that a class participate
in an anti-pattern, this approach allows quality analyst to prioritize the inspection of bad
candidate classes [72].

Marinescu et al. proposed InCode, an Eclipse plug-in [73] to assess the quality of a software
system in terms of anti-patterns by analyzing the source code on the fly using, the detection
strategies proposed in [70]. This tool provides different visualizations and a very comprehen-
sive definition of rules, metrics and design defects. The disadvantage of this approach is that
it does not include a way to remove the detected anti-patterns.

Palomba et al. proposed HIST, a datamining approach to detect a set of five anti-patterns
based on change history information mined from versioning systems [74]. They evaluate
their approach on a testbed of 20 Java systems and a case study with 12 developers of four
opens source systems, and found that by including history information, they could detect

16

more instances of anti-patterns than traditional approaches. Concerning anti-patterns in
mobile applications, the same research group proposed a detection tool, called aDoctor [75],
to detect 15 android anti-patterns using static analysis code techniques. They test aDoctor
on a testbed of 18 android apps and attained a detection precision close to 100%.

3.1.2 Search-based Refactoring

We present a sample of representative works in this category. O’Keeffe and Cinnéide [43]
proposed an approach that relies on the QMOOD model [40] to assess the quality of the
candidate refactorings. They implemented their approach using local search techniques,
namely Simulated annealing (SA), and two versions of hill climbing. They found strong
evidence that QMOOD flexibility and understandability attributes are the most suitable
attributes to assess the quality of the refactoring solutions. The same authors extended
this study in [69] by adding GA. They found Multiple-ascent hill climbing to be the most
efficient search technique in terms of speed, quality obtained in different program inputs,
and consistence for a different set of parameters; GA performs better with high values of
crossover and mutation; the effectiveness of simulated annealing varies in function of the
input program.

Seng et al. [44] proposed an approach based on genetic algorithm, that aims to improve
the cohesion of the entities through the implementation of the move method refactoring
and evaluated the quality of the refactoring sequences with a fitness function that comprise
coupling, cohesion, complexity and stability measurements.

Harman and Tratt [45] introduced a multiobjective approach for the problem of refactoring
that allows to treat the refactoring problem as a multi-objective problem, where the goal is
to find the Pareto front, i.e., the set of solutions where there is no component that can be
improved without decreasing the quality of another component. Thus, the outcome is not a
single solution but a set of optimal solutions to be selected by the developer.

Ouni et al. [26] proposed a multiobjective evolutionary algorithm based on the Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [63]. The two conflicting objectives of their ap-
proach are correcting the larger quantity of design defects, while preserving semantic coher-
ence. For the first objective, they input a set of rules to characterize design defects from the
literature, and select the rules that detect the most design defects from a set of previous de-
tected defects (example-based approach). The second objective is achieved by implementing
two techniques to measure similarity among classes, when moving elements between them.
The first technique evaluates the cosine similarity of the name of the constituents, e.g., meth-
ods, fields, types. The second technique considers the dependencies between classes.

17

Moghadam and Cinnéide [76] proposed an automated approach where the goal is to reach a
desired design model, described as a UML diagram. The approach takes as input the source
code of the desired program and the program to be improved; then, it abstracts the corre-
sponding UML design models, and computes the differences between them. Next, it maps
the set of differences to source-level refactorings that will be applied in the code. The search
problem consists in finding the larger sequence of refactorings that can be legally applied in
the program. The metaheuristics algorithms used are the same as those implemented in [69].

Mkaouer et al. [77] proposed an extension of [26], by allowing user’s interaction with the
refactoring solutions. Their approach consists of the following steps: (1) a NSGA-II algorithm
proposes a set of refactoring sequences; (2) an algorithm ranks the solutions and presents
them to the user who will judge the solutions; (3) a local-search algorithm updates the set
of solutions after n number of interactions with the user or when m number of refactorings
have been applied.

3.1.3 Other refactoring approaches

Tsantalis et al. proposed different semi-automated approaches to detect refactoring oppor-
tunities like extract method, move method, and removing non-trivial code smells like fea-
ture envy and type-checking to improve the design quality of a system. They implemented
their techniques as an Eclipse plug-in, named JDeodorant 1 allowing their evaluation on Java
projects [37, 78, 79, 80]. Semi-automatic approaches provide an interesting compromise be-
tween fully automatic detection techniques that can deviate from human context and manual
inspections which are tedious and subjective. However, they require the developer to take
decisions about the order of refactorings to be applied. On the contrary, the approaches pro-
posed in this dissertation aim to relieve developers from the time-consuming task of selecting
the best sequence of refactorings and evaluating their impact one by one.

3.1.4 Refactoring Scheduling Problem

In this category we present some of the representative works that proposed techniques to
schedule a set of candidate refactorings to improve the effect of refactoring according to some
defined quality objectives, and to overcome the weakness of search-based approaches that are
based on evolutionary algorithms.

Mens et al. [81] formulated a model to analyze refactoring dependencies using critical pair
analysis. However, this model lacks automation to schedule refactorings once potential con-

1. http://www.jdeodorant.com

18

flicts are detected.

Liu et al. [82] proposed an heuristic algorithm to schedule refactorings based on a conflict
matrix and the effects of candidate refactorings on the design. They evaluated their approach
on a house-made modeling tool using QMOOD [40] model and found that it outperforms a
manual approach.

Liu et al. [83] proposed an algorithm to schedule the refactoring of code smells using pair-
wise analysis. By using topological sort on graph that represents the type of anti-patterns
detected, they reduced the search of sequences by removing redundant edges that correspond
to overlapping smells. However, they did not automate the application of the refactorings on
the systems.

These previous works require a list of candidate refactorings in advance to schedule a sequence
of refactorings.

Bouktif et al. [84] proposed an approach to schedule refactoring actions in order to remove
duplicated code using genetic algorithm.

Lee et al. [85] proposed an approach to automatically schedule refactorings to remove method
clones using a Competent Genetic Algorithm. The proposed approach was evaluated using
a testbed of four open-source systems. They found higher quality improvement compared to
manual and greedy search in terms of QMOOD model [40], but the same quality improvement
using exhaustive search for the less complex systems.

Zibran and Roy [86] proposed an approach to refactor code clones based on constraint pro-
gramming. They evaluated their approach on four in-house systems and reported that it
outperformed greedy and manual approaches.

Moghadam and Ó Cinnéide [87] proposed an approach for refactoring scheduling where the
quality goal is set to be a desired design expressed as a UML model, and the refactoring
operators are transformations aimed at achieving that model. They evaluated their approach
on an open-source system with a small set of 50 refactorings to be scheduled and found that
the produced sequence of refactorings could transform the initial design into the desired
design with 100% of success.

3.1.5 Management and prioritization of anti-pattern’s correction

In this subsection, we discuss related work on management and prioritization of anti-patterns.

19

Use of refactoring history. Ouni et al. [27] proposed an approach to leverage develop-
ment history to prioritize the application of refactorings that have been applied in previous
maintenance sessions. They claimed that by measuring the similarity of previous refactorings
applied in similar contexts they can improve the quality of the refactorings proposed. They
applied their proposed approach on a testbed of 5 open-source systems and reported an im-
provement of around 10% compared to previous approaches that do not consider refactoring
history.

Use of developers’ task context. To the best of our knowledge, we propose the first
automated refactoring approach that leverages developer’s task context to prioritize anti-
patterns correction (cf. chapter 4). Hence, we present related research works that leverage
task context with two objectives: (1) to assist developers during task resolutions (i.e., the
context is collected and directly used during the resolution of the current task), and (2) to
understand developers’ activities.

Kersten and Murphy [88] used the task context to reduce information overhead by filtering
and keeping in the developers’ environment (i.e., package explorer in the IDE) only the
program entities relevant to the developer’s task. This prevents the developer from searching
for relevant information in a large information space; improving the developer’s productivity.
Robbes and Lanza [89] also used developer’s previously collected contexts to build a code
completion tool that reduces developers’ scrolling effort. Users found their proposed tool
to be more accurate than previous tools. Recently, Lee et al. [90] proposed an approach
(named MI) to recommend relevant entities to developers. They used both view and selection
activities on the entities from the developer’s context and mined association rules to identify
relevant entities.

Among the studies that used developers’ task context to examine developers’ activities is
the work of Sanchez et al. [91], who studied developers interruptions and found that work
fragmentation is correlated with lower productivity. Ying and Robillard [92] and Zhang et al.
[93] studied how developers perform editing activities. Ying and Robillard [92] defined file
editing styles (edit-first, edit-last, and edit-throughout) and found that enhancement tasks are
associated with a high fraction of edit events at the beginning of the programming session(i.e.,
edit-first). Zhang et al. [93] characterize how several developers concurrently edit a file and
derive concurrent, parallel, extended, and interrupted file editing patterns. They found these
file editing patterns to be related to future faults. Soh et al. [94] used Mylyn context to study
how developers’ navigate through program entities. They found that developers spend more
effort on tasks when they exhibit unreferenced exploration (i.e., program entities are almost
equally revisited) compared to reference exploration (i.e., revisitation of a set of entities).

20

3.1.6 Testing Strategies

Testing is an essential but expensive activity to ensure software quality and reliability.
Beizer [95] estimates the cost of software testing at 50% of the overall cost of software.
Hence, researchers investigate various directions to reduce testing effort and increase its ef-
fectiveness. As we propose an automated approach that leverages testing effort to propose
refactoring solutions that improve the testability of software systems (cf. Chapter 6), we
present some related research works on software testing.

Studies related to factors that impact testing effort can be found in [96, 97]; while approaches
to automatically generate test data are found in [98, 99]. Finally, other studies defined strate-
gies that can efficiently target specific type of systems or specific kind of faults. In this cate-
gory, we can cite the different OO strategies that have been proposed to overcome traditional
testing strategies limitations regarding the test of OO systems: state based testing [100], pre-
and-post conditions testing [101], and MaDUM testing [102]. Another direction to reduce
testing effort is to refactor a system specifically for testing. Belonging to this last category
are the refactoring as testability transformation works [103, 104]. Refactoring as testability
transformation is different from refactoring of anti-patterns in the sense that the system is
not changed to improve the design quality of a system, but another version is created just
to facilitate the generation of test data that will be used to test the original system. To the
best of our knowledge, there is no work that automatically apply refactoring of anti-patterns
to reduce testing effort. Sabane et al. [97] present some refactoring actions to reduce testing
effort based on the MaDUM strategy. They manually apply some extract method refactor-
ings to reduce the number of transformers of a class under test. These refactorings were
performed manually, attempting to reduce the testing effort, not to remove anti-patterns or
improve design quality. In fact, some of them were found to decrease the understandability
of the class.

3.1.7 Refactoring of Mobile Apps

As we propose an automated approach that considers energy consumption during the refac-
toring of mobile apps (cf. Chapter 7), we present related research works on anti-patterns,
and energy efficiency of mobile apps.

Mobile anti-patterns

Linares-Vásquez et al. [105] leveraged DECOR to detect 18 OO anti-patterns in mobile apps.
Through a study of 1,343 apps, they have shown that anti-patterns negatively impact the

21

fault-proneness of mobile apps. In addition, they found that some anti-patterns are more
related to specific categories of apps.

Verloop [106] leveraged refactoring tools, such as PMD 2 or JDeodorant [107] to detect code
smells in mobile apps, in order to determine if certain code smells have a higher likelihood
to appear in the source code of mobile apps. In both works, the authors did not considered
Android-specific anti-patterns.

Reimann et al. [108] proposed a catalog of 30 quality smells specific to the Android platform.
These smells were reported to have a negative impact on quality attributes like consumption,
user experience, and security. Reimann et al. also performed detections and corrections
of certain code smells using the REFACTORY tool [109]. However, this tool has not been
validated on Android apps [110].

Li et al. [31] investigated the impact of Android developing practices and found that accessing
class fields, extracting array length into a local variable in a for-loop and inline getter and
setters can reduce the energy consumption of an app in test harness developed specifically
for this purpose.

Hecht et al. [110] analyzed the evolution of the quality of mobile apps through the analy-
sis of 3,568 versions of 106 popular Android apps from the Google Play Store. They used
an approach, called Paprika, to identify three object-oriented and four Android-specific anti-
patterns from the binaries of mobile apps. Recently, they also evaluated the impact of remov-
ing three types of Android anti-patterns (two of them also studied in this work, e.g., HashMap
usage, and private getters and setters) using a physical measurement setup [111].

Energy Consumption of mobile apps

There are several works on the energy consumption of mobile apps [112, 113, 114, 115,
116, 117]. In this dissertation we focus on those who aimed to understand software en-
ergy consumption [114], energy usage [118], or the impact of developer’s choices on energy
efficiency [119].

Green Miner [117] is a dedicated hardware mining software repositories testbed. The Green
Miner physically measures the energy consumption of Android mobile devices and automates
the reporting of measurements back to developers and researchers. A Green Miner web
service 3 enables the distribution and collection of green mining tests and their results. The
hardware client unit consists of an Arduino, a breadboard with an INA219 chip, a Raspberry

2. https://pmd.github.io/
3. https://pizza.cs.ualberta.ca/gm/index.py

22

Pi running the Green Miner client, a USB hub, and a Galaxy Nexus phone (running Android
OS 4.2.2) which is connected to a high-current 4.1V DC power supply. Voltage and amperage
measurement is the task of the INA219 integrated circuit which samples data at a frequency
of 50Hz. Using this web service, users can define tests for Android apps and run these tests
to obtain and visualize information related to energy consumption.

Energy models can be provided by a Software Environment Energy Profile (SEEP) whose
design and development enables the per instruction energy modeling. Unfortunately, it is not
common practice for manufacturers to provide SEEPs. Because of that, different approaches
have been proposed to measure the energy consumption of mobile apps. Pathak et al. [120]
proposed eprof, a fine-grained energy profiler for Android apps, that can help developers
understand and optimize their apps energy consumption. In [121], authors proposed the
software tool eLens to estimate the power consumption of Android applications. This tool
is able to estimate the power consumption of real applications to within 10% of ground-
truth measurements. One of the most used energy hardware profilers is the Monsoon Power
Monitor which has been used in several works.

Da Silva et al. [122] analyzed how the inline method refactoring impacts the performance
and energy consumption of three embedded software written in Java. The results of their
study show that inline methods can increase energy consumption in some instances while
decreasing it in others.

Sahin et al. [123] investigated how high-level design decisions affect an application’s energy
consumption. They discuss how mappings between software design and power consumption
profiles can provide software designers and developers with insightful information about their
software power consumption behavior. In another work, Sahin et al. [118] investigated the
impact of six commonly-used refactorings on 197 apps. The results of their study have shown
that refactorings impact energy consumption and that they can either increase or decrease
the amount of energy used by an app. The findings also highlighted the need for energy-aware
refactoring approaches that can be integrated in IDEs.

Banerjee et al. [32] proposed a technique to identify energy hotspots in Android apps by
the generation of test cases containing a sequence of user-interactions. They evaluate their
technique using a testbed of 30 apps from F-Droid.

Pinto [124] suggested a refactoring approach to improve the energy consumption of paral-
lel software systems. The approach was manually applied to 15 open source projects and
reported an energy saving of 12%.

Li et al. [125] proposed an approach to transform web apps to improve energy consumption of

23

mobile apps and achieved an improvement of 40%, with an acceptance rate of 60% among the
users in a testbed of seven web apps. To address the same problem, but using multiobjective
technique, Linares-Vásquez et al. [30] proposed an approach to generate energy-friendly color
palettes that are consistent with respect to the original design in a testbed of 25 apps.

Wan et al. [126] proposed a technique for detecting graphic user interfaces that consumes
more energy than desirable. After evaluating their technique on a testbed of 10 apps, they
reported that their approach can accurately predict the energy consumption of an app within
14% of the ground truth according to the error estimation rate, which is the accuracy of the
power estimate compared to the real measurements.

Bruce et al. [127] leverage Genetic Improvement to improve the energy consumption of three
MiniSAT downstream apps achieving 25% of improvement.

Manotas et al. [128] proposed a framework (SEEDS) to automatically select the most energy
efficient Java’s Collections API and achieved 17% of energy usage improvement on a testbed
of seven Java apps.

Hecht et al. [49] conducted an empirical study focusing on the individual and combined per-
formance impacts of three Android performance anti-patterns from two open-source Android
apps. These authors evaluated the performance of the original and corrected apps on a com-
mon user scenario test. They reported that correcting these Android code smells effectively
improves the user interface and memory performance.

24

CHAPTER 4 USING DEVELOPER’S CONTEXT FOR IMPROVING
AUTOMATED REFACTORING

4.1 Introduction

In this chapter we study the use of developer’s task context to prioritize classes that need to be
refactored. The main problem with current automated refactoring approaches [24, 36, 27, 129]
(cf. Chapter 3) is that they rely on (1) a collection of bad design code examples which
adds a new task and responsibility to developers, to collect and manage the aforementioned
collection, or (2) a desired design [130], where developers are expected to input the model that
they want to achieve in advance. In any case, developers have to accept a global solution,
which might consider classes that are not part of the scope of the maintenance task that
they are performing, or in other words, out of the context. As a result, developers have to
deal with a long sequence of refactorings that often affect classes on which they have no
previous knowledge, or lack of ownership. Yet, previous studies have shown that developers
prefer approaches that do not disrupt their work flow. In fact, Murphy-Hill et al. report
that developers prefer approaches that suggest refactoring operations that can be applied to
the group of files that are currently active in their workspace [42] and-or integrated in their
preferred Integrated Development Environment (IDE).

This chapter describes an automated refactoring approach that is based on developer’s task
context. We refer to our proposed approach as Refactoring approach based on task Context
(ReCon) for the rest of this dissertation. ReCon has the following advantages over the
state-of-the-art approaches: (1) it does not require a set of bad examples, as detection rules
are derived from the literature of anti-patterns; (2) it is customizable at a high-level of
abstraction, using a domain specific language, and (3) it generates a set of local refactoring
solutions, i.e., refactoring suggestions over active classes, that developers can apply on the
fly while performing his development or maintenance task.

To evaluate the performance of ReCon, we mined 1,705 Mylyn Interaction Histories (IH) from
three open-source projects (Mylyn, PDE, and Eclipse Platform). From the IH of each task,
we computed the relevant classes and entities targeted by the developer when performing the
task (this constitutes the task context). Then, we download the code snapshot for each task,
from the Version Control System (VCS) of the project and evaluate the quality of the project
before and after applying ReCon, considering the removal of anti-patterns and the quality
gain in terms of five desirable quality attributes: understandability, flexibility, reusability,
effectiveness and extendibility defined in QMOOD [40]. We run our approach using two

25

different styles, the refactoring of all classes in a system (root-canal), and the incremental
refactoring of certain classes explored during maintenance sessions (floss refactoring).

4.2 Prioritizing refactoring of anti-patterns by leveraging Developer’s Task Con-
text

In this chapter, we aim to support developers during floss refactoring performed while im-
plementing their daily development and maintenance tasks.

Thus far, automated approaches have focused on providing complete refactoring solutions
which cannot be applied in regular developer tasks, but in dedicated refactoring sessions.
We, therefore, set out to address the following question:

�
�

�
�

Central Question: Is it possible to improve automated refactoring by leveraging devel-
oper’s task context?

To guide the search of refactoring opportunities in relevant artifacts (i.e., classes relevant
to developers’ task), we leverage information provided by interaction traces (captured using
the monitoring tools) and suggest refactorings that the developer can apply on the fly while
performing his task.

By developers’ task context, or simply task context, we refer to the program entities that the
developers used when resolving a development or maintenance task. In fact, during devel-
opment or maintenance sessions, developers usually interact with program entities through
their IDE. The task context is accessible using monitoring tools, such as Mylyn [131], or
MimEc [132]. These tools log all developers’ interaction with the program entities (e.g.,
interaction trace). In the following we use Mylyn as an example of a monitoring tool.

Mylyn is an Eclipse plug-in for task and application lifecycle management, which introduces
the concept of task-focused interface [133] (i.e.,the IDE realigns the objects in the User
Interface (UI) to show only relevant code entities). When developers activate a task, Mylyn
automatically build the task context by monitoring developer’s activities. Task context is a
graph of program elements and their relationships that a developer uses to perform a task.
Mylyn builds the task context based on a degree-of-interest model that consist of weighing
the relevance of elements to the task.

A developer can create a Mylyn task to track the code changes when handling a change
request. The developer’s programming activities are monitored by Mylyn to create a task
context and predict relevant artifacts for the task. The programming activities monitored

26

by Mylyn include selection and edition of files. In Mylyn, each activity is recorded as an
interaction event between a developer and the IDE. There are eight types of interaction
events in Mylyn, as described in Table 4.1. Three types of interaction events are triggered
by a developer, i.e., Command, Edit and Selection events.

Each Mylyn log has a task identifier, which often contains the change request ID. A My-
lyn log is stored in an Extensible Markup Language (XML) format. Its basic element is
InteractionEvent that describes the event. The descriptions include: a starting date (i.e.,
StartDate), an end date (i.e., EndDate), an event type (i.e., Kind), the identifier of the UI
affordance that tracks the event (i.e., OriginId), and the names of the files involved in the
event (i.e., StructureHandle). Listing 4.1 presents an example of InteractionEvent that was
recorded during the correction of the bug #311966 1 of Eclipse’s bug repository.

Table 4.1 Event Types from Mylyn.

Event Type Description Developer-Initiated ?

Command Click buttons, menus, and type in keyboard shortcuts. Yes
Edit Select any text in an editor. Yes

Selection Select a file in the explorer. Yes
Attention Update the meta-context of a task activity. No

Manipulation Directly manipulate the degree of interest (DOI) value
through Mylyn’ user interface.

No

Prediction Predict relevant files based on search results. No
Preference Change workbench preferences. No

Propagation Predict relevant files based on structural relationships
(e.g., the parent chain in a containment hierarchy).

No

Listing 4.1 Structure of the Mylyn log of bug #311966.
1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8" ?>
2 <In t e r a c t i onH i s t o r y Id=" h t t p s : //bugs . e c l i p s e . org /bugs−311966 "
3 Vers ion=" 1 ">
4 <Inte rac t i onEvent
5 StartDate="2010−06−25␣11 : 2 7 : 2 3 .935 ␣EDT"
6 EndDate="2010−06−25␣11 : 2 7 : 2 7 .777 ␣EDT"
7 Kind=" ed i t "
8 Orig inId=" org . e c l i p s e . j d t . u i . Compi lat ionUnitEditor "
9 StructureHandle=" / org . e c l i p s e . mylyn . b u g z i l l a . u i / s r c / org / e c l i p s e /mylyn/ i n t e r n a l / bu g z i l l a /

u i / t a s k l i s t /Bugz i l laConnectorUi . java "
10 StructureKind=" r e sou r c e "
11 I n t e r e s t=" 2 .0 "
12 Delta=" nu l l "
13 Navigat ion=" nu l l "
14 />
15 . . .
16 <Inte rac t i onEvent
17 . . .
18 />
19 </ In t e r a c t i onH i s t o r y>

1. https://bugs.eclipse.org/bugs/show_bug.cgi?id=311966

https://bugs.eclipse.org/bugs/show_bug.cgi?id=311966

27

In the rest of this chapter, we refer to the set of program entities relevant to a developer’s
task as the context.

4.3 Approach

In Figure 4.1 we present the workflow of ReCon. A rectangle indicates a process while a
rectangle with the corner folded indicates the input/output of a process. ReCon takes as
an input an interaction trace generated by a monitoring tool, and a software system. We
generate an abstract model by performing a static analysis of the software system. We
identified the relevant classes from the interaction trace (task context), and build a map
of anti-patterns based on the anti-patterns detection results. Next, we generate a list of
candidate refactorings to correct the anti-patterns detected. After that, we use a search
algorithm to find the best combination of refactorings that remove the largest number of
anti-patterns. The search algorithm can be any metaheuristic technique such as GA, SA, or
VNS. It can be argued that in tasks comprised of a few classes, a greedy algorithm, or in the
absence of conflicts, applying all the candidate refactorings is more effective than running a
metaheuristic. However, it is common to find conflict between refactorings operations, even
in the same class. In that case, a search-based algorithm is useful. For that reason, if we
detect that there is no conflict between the refactoring operations generated for a determined
system, we simply apply all the refactoring operations, without regards of the application
order.

Interaction
trace

 Search
algorithm

Best
sequence of
refactorings

Software
System

List of Relevant
entities

Obtained from a monitoring tool,
e.g., Mylyn, or Mimec.

Context Adaptor
Anti-patterns

Detector

Abstract
ModelModel generator

Map of
anti-patterns

Generation of
refactoring
 candidates

List of
candidate

Refactorings

Figure 4.1 Workflow of ReCon.

The search algorithm receives as an input a set of candidate refactoring operations and pro-
duces as an output a sequence of refactoring operations to be applied in the system. During
the search process, which is non-deterministic, the candidate sequences are evaluated using a
blackbox approach, where each candidate sequence is applied to a copy of the abstract model,

28

and the resultant model is evaluated in terms of anti-patterns occurrences. This process con-
tinues until it finds a sequence that removes all anti-patterns, or the search algorithm reaches
the maximum number of iterations. The final output is a valid (non-conflicted) sequence of
refactorings to improve the design quality of the code entities in the task context.

4.4 Evaluation

The goal of this case study is to assess the effectiveness of ReCon in correcting anti-patterns
in object-oriented systems (OO) during maintenance tasks. The quality focus is the improve-
ment of the design quality of OO systems. The perspective is that of researchers interested
in developing automated refactoring tools, and developers interested in improving the design
quality of their code.

The context consists of 1,705 task contexts, and 1,013 code snapshots from three open-source
software systems (Mylyn, PDE, and Platform), and three metaheuristic techniques (GA, SA,
VNS). In Table 4.2, we present relevant information about the Eclipse projects studied and
the count for each type of anti-pattern.

Table 4.2 Descriptive statistics of the studied Eclipse projects.
Name Number of classes Number of tasks Number of anti-patterns
Mylyn 2,365 183 167
PDE 16,045 129 3,512
Platform 20,259 213 3,558

4.4.1 Dependent and Independent Variables

To assess whether automatic refactoring using context improves the quality of a system, we
consider the following dependent and independent variables:

Independent variables: The independent variables define the refactoring approaches that
we performed. We use two refactoring styles: automated root-canal refactoring and auto-
mated floss refactoring.

Dependent variables: We use the following variables to assess whether a refactoring ap-
proach (i.e., automated floss refactoring or automated root-canal refactoring) improves the
quality of the system.

— Number of anti-patterns removed after refactoring (#AP): For each refactoring ap-
proach, we compute the number of anti-patterns removed. The number of anti-patterns

29

removed is an indication of the improvement of the design quality of the system. The
more anti-patterns are removed, the better is the design quality of the system.

— Design quality improvement. After finding the best refactoring solution for each pro-
gram using the proposed metaheuristics, we evaluate the resulting design code using 5
quality functions attributes of QMOOD hierarchical model.

4.4.2 Data Collection and Processing

We follow two main steps to collect and process the data of our experiment:

(1) In step one, we collect developers’ interaction traces from the Eclipse bug repository 2.
Interaction traces appear as attachments to a bug report. These interaction traces contain
program entities that developers interacted with (i.e., the context). When collecting an in-
teraction trace during a bug resolution, developers also perform modifications on the system.
These modifications that change the state of the system (and which can improve or degrade
the quality of the system) are essential for the completion of the developer’s task. Hence, it
is important to consider these developers’ modifications when looking for refactoring oppor-
tunities.

We consider a patch attached to a bug report as the changes performed by a developer during
his working session if and only if the interaction trace and the patch are attached by the same
developer at the same time [134]. In our experiment, we consider the interaction traces and
patches of three Eclipse projects that have most interaction traces. Precisely, we downloaded
663, 132, and 218 couples of interaction traces and patches for Mylyn, PDE and Platform
systems, respectively.

(2) In step two, we identify the start timestamp of each interaction trace. We consider that
developers checkout the system before they start fixing a bug. Thus, we checkout the snapshot
of the system from the appropriate source code repository (i.e., the VCS of the project on
which the task was performed) on the master branch and before the start timestamp. In total
we checkout 663, 132, and 218 snapshots of Mylyn, PDE and Platform projects, respectively.
Snapshots provide the states of the system used by the developers and the patches contain
the changes made by the developers.

4.4.3 ReCon implementation

We implement the workflow depicted in Figure 4.1 using Java. We start by extracting
relevant code entities in a developer’s task from interaction traces, generated by Mylyn,

2. https://bugs.eclipse.org/bugs/

30

using our context adaptor. Then, we perform the static analysis of the system, using Ptidej
tool suite 3. The result is a Pattern and Abstract-level Description Language (PADL) model,
which is an abstract representation of the code entities, such as classes, interfaces, methods
and attributes, and their structural relationships, e.g., inheritance, association, etc. Next,
we detect anti-patterns in the PADL model using Software Architectural Defects (SAD) tool,
which is the implementation of DECOR [52], a well known approach to define and detect
anti-patterns, also part of Ptidej tool suite (cf. Section 2.2.2).

For this chapter, we consider four types of anti-patterns, namely Lazy Class (LC), Long
Parameter list (LP), Spaghetti Code (SC) and Speculative Generality (SG). We
select these anti-patterns, because (1) they are well defined in the literature, with the recom-
mended steps to remove them [47], (2) they are easy to identify by developers [7], (3) they
have been studied in previous works [4, 52, 135, 72].

In Table 2.1, we briefly described each anti-pattern considered in this dissertation, and the
proposed refactoring(s) operation to correct them. The proposed refactorings procedures,
suggested in the literature [33, 3], aim to support developers, with a previous knowledge
of the system functionality, to improve the quality of their systems. They rather exhibit
developer’s experience, than provide formal rules for characterizing anti-patterns. Hence, to
automate this task, we adapted the aforementioned procedures by leveraging the structural
information computed from the abstract model and the anti-pattern detection step. We
defined a refactoring strategy for each anti-pattern, following the recommendations from
previous works on semantic preservation [11, 136]. In the next paragraphs, we provided a
brief explanation of the refactoring strategies developed used in this dissertation, based on
the anti-pattern’s definitions described in the literature.

In the case of lazy class, the proposed refactoring is inline class, which consist of moving all the
features of a LC to another class, and after that remove the LC class from the system. As an
example, we present in Figure 4.2 the UML diagram of class XMLCleaner, from Eclipse Mylyn
Project. This class, which aims to escape “&” characters from XML files, consists of only
one public method with less than 20 LOC. Hence, a possible candidate refactoring operation
is inlining class XMLCleaner to another related class (In the example showed in Figure 4.2,
we inlined XMLCleaner to AbstractReportFactory, as AbstractReportFactory calls the
method collectResults).

As we can observe, inline class refactoring is comprised of a series of low level refactorings
that have to be applied in specific order, e.g., move method(s) and/or attribute(s) to another
class, update call sites, and delete LC class. Unlike previous refactoring approaches [24, 22]

3. http://www.ptidej.net/tools/designsmells/

31

XMLCleaner

+clean(in :Reader, tempFile: File)

AbstractReportFactory

+RETURN_ALL_HITS
-inStream
-characterEncoding

#CollectResults(contentHandle
:DefaultHandler, clean :boolean)

AbstractReportFactory

+RETURN_ALL_HITS
-inStream
-characterEncoding

#CollectResults(contentHandle
:DefaultHandler, clean :boolean)
+clean(in :Reader, tempFile: File)

a) Original design b) Refactored design

Figure 4.2 An example of Lazy class and its corresponding refactoring.

where low level refactorings are combined without targeting an specific anti-pattern, the
sequence of refactorings operations generated by ReCON contains all necessary steps to
remove a particular type of anti-pattern. Before applying a refactoring operation, we check
if it satisfies a set of pre- and post-conditions to preserve the semantic of the code. For
example, one precondition is that we do not inline parent classes, as inlining such classes will
introduce regression in the children. An example of post-condition is that after inlining a LC,
there is any class in the system with the same signature of the LC. Other quality attributes,
such as cohesion are also considered by our approach when applying a refactoring operation.
For the inline class example, we select a destiny class that is related to the LC as much as
possible. To select such a class, we iterate over all the classes in the systems, searching for
methods and attributes that access the LC features directly, or by public accessors (getters
or setters). From those classes we choose the one with the large number of access to the LC.

Long parameter list classes are classes that contain one or more methods with an excessive
number of parameters, in comparison with the rest of the entities. DECOR defines a threshold
to detect when a method have excess of of parameters, based on the computation of boxplot
statistics involving all the methods in the system. For example, class RemoteIssue from
Mylyn project (shown in Figure 4.3) has 21 parameters in its constructor, making it hard
to understand and maintain.

The refactoring strategy consists in (1) extracting a new class for each long-parameter-list-
method, that will encapsulate a group of parameters that are often passed together, and that
can be used by more than one method or classes (improving the readability of the code); (2)
updating the signature of each method to remove the migrated parameters, and update the
callers and method body in the LP class, to instantiate and replace the parameter with the
new parameter object.

Spaghetti code classes are those classes that implement long methods with no parameters

32

1 p u b l i c RemoteIssue (java . lang . S t r i n g id ,
2 org . e c l i p s e . mylyn . i n t e r n a l . j i r a . c o r e . wsdl . beans . RemoteVersion [] a f f e c t s V e r s i o n s ,
3 java . lang . S t r i n g a s s i g n e e ,
4 java . lang . S t r i n g [] attachmentNames ,
5 org . e c l i p s e . mylyn . i n t e r n a l . j i r a . c o r e . wsdl . beans . RemoteComponent [] components ,
6 java . u t i l . Calendar created ,
7 org . e c l i p s e . mylyn . i n t e r n a l . j i r a . c o r e . wsdl . beans . RemoteCustomFieldValue [] customFieldValues ,
8 java . lang . S t r i n g d e s c r i p t i o n ,
9 java . u t i l . Calendar duedate ,

10 java . lang . S t r i n g environment ,
11 org . e c l i p s e . mylyn . i n t e r n a l . j i r a . c o r e . wsdl . beans . RemoteVersion [] f i x V e r s i o n s ,
12 java . lang . S t r i n g key ,
13 java . lang . S t r i n g p r i o r i t y ,
14 java . lang . S t r i n g p r o j e c t ,
15 java . lang . S t r i n g r e p o r t e r ,
16 java . lang . S t r i n g r e s o l u t i o n ,
17 java . lang . S t r i n g s t a t u s ,
18 java . lang . S t r i n g summary ,
19 java . lang . S t r i n g type ,
20 java . u t i l . Calendar updated ,
21 java . lang . Long v o t e s) { . . . }

Figure 4.3 An example of Long-parameter list constructor detected in Mylyn.

at all, abusing of old procedural programming paradigm, and neglecting the advantages of
object-oriented programming. Hence, the proposed refactoring strategy includes the extrac-
tion of one or more long methods as new objects. This requires creating a new class for
each long method, where the local variables become fields, and a constructor that takes as
a parameter a reference to the SC class; the body of the original method is copied to a
new method compute, and any invocation of the methods in the original class will be ref-
erenced through the parameter (stored as final field) to the SC class. Finally, the original
long method is replaced in the SC class by the creation of the new object, and a call to the
compute method. Note that we updated the detection rule of spaghetti code defined in SAD
to better reflect the definition in the literature [3], where it is stated that spaghetti code
is a class with no hierarchy that declares long methods with no parameters. However, the
detection condition for method with many parameters in SAD is set to number of parameters
inferior to five. We modified the condition to methods with number of parameters equal
to zero, to avoid detecting false positives of this anti-pattern. Note that we did not find
instances of this anti-pattern in any of the projects studied, using neither the original nor
the suggested fix, and for that reason we cannot provide any example.

In the case of classes affected by speculative generality, the definition states that there
is an abstract class that is specialized only by one class, mainly for handling future en-
hancements that are not currently required, and thus it is not worthy to keep both classes
in the system. We can observe this anti-pattern when we find a subclass and superclass
that looks-alike. For example, consider the two classes named AbstractHandler from pack-
ages org.eclipse.core.commands and org.eclipse.ui.commands in Platform project (Fig-
ure 4.4). We can observe that these classes are practically the same. In addition, there is no
other class that inherits from the parent class located on the package org.eclipse.core.

33

commands. Hence this case is an ideal candidate to apply CH refactoring.

To perform CH, we first remove the keyword abstract from the parent class; next, we pull up
the methods and attributes from the child class to the parent class; remove the child class
from the system; and replace the type’s definitions and call sites from child to the parent
class. We discard this refactoring when the child class is defined as inner class inside another
class. Inner classes are an integral part of the event-handling mechanism in user interfaces
events [137], which is far different from the concept of SG anti-pattern.

AbstractHandler

-baseEnabled

+addhandlerListener(...)
+dispose
+execute(...)
#fireHandlerChanged(...)
#hasListeners()
+isEnabled()
+ishandled()
+removeHandlerListener(...)
+setBaseEnabled(...)
+setEnabled(...)

AbstractHandler

-handlerListeners

+addhandlerListener(...)
+dispose
+execute(...)
#fireHandlerChanged(...)
+getAttributeValuesbyName()
#hasListeners()
+isEnabled()
+ishandled()
+removeHandlerListener(...)

package
org.eclipse.core.commands

package
org.eclipse.ui.commands

Figure 4.4 An example of Speculative Generality anti-pattern.

The objective function that we use to guide the search for refactoring sequences is presented
in Equation (4.1) [36]. It measures the number of anti-patterns removed in comparison
with the maximum number of anti-patterns that can exist in a system. We choose this
fitness function because it is easy to implement and it is an inexpensive way to measure the
effectiveness of our approach with respect to the correction of anti-patterns.

DQ = 1− NDC

NC ×NAT
, (4.1)

where NDC is the number of classes that contain anti-patterns, NC is the number of classes,
and NAT is the number of anti-pattern’s types. This objective function increases when the
number of anti-patterns in the system is reduced after applying the proposed refactoring
sequence. The output value of DQ is normalized between 0 and 1.

Note that the objective function (the number of anti-patterns removed) depends in a non-
trivial way on the code of the original and the refactored version. This fact makes it difficult to
model the problem using a closed algebraic expression and, thus, limits the kind of algorithms
and techniques we can use to solve the problem. In particular, mathematical programming
techniques are difficult to apply in this case, since it requires constraints and objective func-

34

tions given as closed algebraic expressions. Any algebraic model of the objective function
should probably take into account too much detail of the source code, which would increase
the number of variables and constraints of the potential mathematical program up to the
point that it is too large to be solved in a reasonable time. For this reason, we follow a
black box optimization approach, where the quality of the solutions proposed is given by
an objective function which detects on-the-fly anti-patterns in the refactored code. Meta-
heuristic algorithms [138] are among the most successful techniques to apply in the context
of black box optimization. In the next paragraph we will detail the representation of the
solutions, and the parameters of the algorithms used in this chapter to find the best sequence
of refactorings.

Solution representation

To represent a candidate solution, we use a vector representation where each element repre-
sents a refactoring operation (RO). In Table 4.3 we present a synthetic example. We include
a Id field, which is an integer number assigned to each refactoring operation in our generated
list of refactoring opportunities. The optimization algorithm uses this Id to know which refac-
torings have been applied in the sequence and what ROs can be applied (valid movements in
the search space). We also include the anti-pattern’s source class, and the type of refactoring.
The type of refactoring is used for determining if there is any conflict with any previous RO
in the sequence. In addition to this, and according to the refactoring type, we can have more
fields providing additional information, e.g., qualified name of long-parameter-list methods,
in the case of LP class; children class for a class a class containing Speculative generality
anti-pattern, etc.

Table 4.3 Representation of a refactoring sequence.
ID Source class Type Other fields
9 ExtWindowsMenuUI Introduce Parameter Object List of long-parameter-list methods
26 RangeSearchFromKey Inline class Target class
45 ProjectResource CollapseHierarchy Children class
16 ActivityContextManager Replace method with method object Long method(s) name

Variation operators

Simulated annealing. It employs one variation operator, a.k.a. perturbation operator, which
consists of choosing a random point in a sequence, then we remove the refactoring operations
from that point to the end, and finally we regenerate the sequence until we cannot add more
refactoring operations. To ilustrate this procedure consider the example show in Figure 4.5.

35

We define this strategy, because an arbitrary transformation of a refactoring operation in the
sequence, like the one implemented in binary strings, will lead to semantic inconsistencies
given that in refactoring the order is important, e.g., one refactoring could block further
refactorings. Moreover, it is cheaper to add operations from a starting point (in the worst case
the first refactoring operation) than verifying semantic correctness backwards, and finally, it
brings more diversity which is the ultimate goal of perturbing a sequence.

Id:701
Type: Move
method
Source
class...

Id:16
Type: inline
class
Source
class...

Id:15
Type: move
method
Source
class...

Id:272
Type: move
method
Source
class...

Id:897
Type: inline
class
Source
class...

Id:701
Type: Move
method
Source
class...

Id:15
Type: move
method
Source
class...

Id:272
Type: move
method
Source
class...

Id:897
Type: inline
class
Source
class...

Id:701
Type: Move
method
Source
class...

Id:88
Type: move
method
Source
class...

Id:272
Type: move
method
Source
class...

Id:63
Type: Intr.
Param. Obj.
Source
class...

1. Select a
random cut
point for
each parent

2. Remove
refactorings
after cut

3. Add new
refactorings
until is not
possible

Figure 4.5 Example of perturbation operator

Genetic algorithm. It employs two variation operators, crossover and mutation. To select the
best individuals to perform the crossover, we use the “binary tournament” technique. The
crossover operator is “Cut and splice” [44, 69] technique, which consists in randomly setting
a cut point for each parent, and recombining with the rest of elements of the other parent’s
cut point and vice-versa, resulting in two individuals with different lengths. An example of
this operator is shown Figure 4.6. Note that when a refactoring operation is conflicted with
a previous one in the sequence, we just drop it.

The mutation operator follows the same strategy than the perturbation process implemented
in our version of simulated annealing, rather than the one proposed in in [44, 69] because we
found that the former one was unable to find complete solutions, i.e., the ones that removes
all anti-patterns in a reasonable amount of time.

Variable neighborhood search. It uses the same perturbation operator of SA to alter a solution
in the kth neighborhood.

Parameters of the metaheuristics. We use three metaheuristic techniques in our case study.
As we mentioned before, they make use of different settings to move through the decision
space in the search for an optimal solution. To determine the best parameters for the tech-
niques employed, we run each algorithm with different configurations 30 times, following a
factorial design.

36

Id:701
Type: Move
method
Source
class...

Id:12
Type: Intr.
Param. Obj.
Source
class...

Id:392
Type: Move
method
Source
class...

Id:15
Type: move
method
Source
class...

Id:272
Type: move
method
Source
class...

Id:897
Type: inline
class
Source
class...

Id:55
Type: Col.
hierarchy
Source
class...

Id:36
Type: Move
method
Source
class...

Id:71
Type: Intr.
Param. Obj.
Source
class...

Id:701
Type: Move
method
Source
class...

Id:15
Type: move
method
Source
class...

Id:272
Type: move
method
Source
class...

Id:897
Type: inline
class
Source
class...

Id:71
Type: Intr.
Param. Obj.
Source
class...

Id:55
Type: Col.
hierarchy
Source
class...

Id:36
Type: Move
method
Source
class...

Id:12
Type: Intr.
Param. Obj.
Source
class...

Id:392
Type: Move
method
Source
class...

P
A
R
E
N
T
S

C
H
I
L
D
R
E
N

1. Select a
random cut-point
for each parent

2. For each
parent, create a
child combining
the refactorings
before the cut-
point with the
refactorings after
the cut-point of
the other parent.

Figure 4.6 Example of crossover operator

In the case of GA we test 16 combinations of mutation probability pm = (1, 0.8, 0.5, 0.2),
and crossover probability pc = (1, 0.8, 0.5, 0.2), and obtained the best results with the pair
(0.8, 0.8). This is not a surprise as in [69] they found high mutation and crossover values to
be the best trade for algorithm performance.

For SA, we set the initial temperature to 10,000,000, and tried three different values of cooling
factor (CF), CF = (0.990, 0.993, 0.996, 0.998) and found the best results with the latter one.

For VNS we define a maximum number of neighborhoods maxK = 100. Note that in our
VNs implementation, local search operates at the level of the last j refactoring operations.
We tried different values for the local factor j = (2, 4, 6, 8), and found the best results with
2.

For the specific problem of automated refactoring, setting the initial size of the refactoring
sequence is crucial to find the best sequence in a reasonable time, especially when we have
a huge number of candidate refactorings, because setting a low value will lead to find poor
solutions in terms of anti-patterns correction. On the contrary, if the initial size is very large,
we may obtain the reverse effect because applying many refactorings not necessarily implies
better quality, as refactorings can improve one aspect of quality while worsen others. Hence,
we experiment running the algorithms with three relative thresholds: 25%, 50%, 75% and
100%, of the total number of refactoring opportunities. We found that 50% give us the best
results in terms of removal of anti-patterns.

Finally, the number of iterations for all the algorithms is set to 1000. The population size
for GA is set to 100 individuals as typically used value in other refactoring works [139], and

37

the selection operator used is binary tournament.

With this information, the map of anti-patterns and the relevant code entities, we automat-
ically generate a list of candidate refactorings. The list of candidate refactorings, and the
abstract model are the input of the search algorithm. The search algorithm generate a set of
refactoring sequences. The refactoring sequences are evolved using the corresponding varia-
tion operators. All the candidate sequences are applied to a copy of the PADL model. Then
the number of anti-patterns in the resulting model are computed, and sequence is evaluated
using the objective function. The process finish when the stop condition is met. The final
output is the best refactoring sequence for the current execution.

4.4.4 Analysis Method

We examine two scenarios: (1) developers perform a dedicated refactoring session after the
completion of the task (i.e., root-canal refactoring) and (2) developers intersperse refactorings
among other changes during the task activity (i.e., floss refactoring). In the first scenario, we
generate refactoring candidates for all existing classes contained in a snapshot. For the second
scenario, we only generate refactorings that affect the classes contained in the interaction
history (developer’s context). The generated refactorings aim to correct any of the four anti-
pattern types studied. As we explained before, the interaction histories are associated to
a developer’s patch aimed to fix a bug. Hence, we apply the corresponding patch to each
snapshot, before generating the candidate refactorings, to ensure that they are applied on a
stable version of the code.

Due to the random nature of metaheuristic techniques employed in this chapter, it is necessary
to perform several independent runs to have an idea of the behavior of the algorithms. We
execute 30 independent runs, which is a typically used value in the search-based research
community.

We also compare the performance of the metaheuristics employed with random search to
make sure that they can find better solutions than a pure random approach.

4.4.5 Results of the Experiment

This section presents and discusses the results of our experiment.

38

Individual task context versus accumulated task context

After applying their corresponding patch to each task snapshot, we perform floss refactor-
ing (as described in Section 4.4.4) and compare the count of anti-patterns before and after
refactoring to assess the benefits of ReCon. In Figure 4.7, we present box plots with the dis-
tribution of anti-patterns occurrences for the 657 studied tasks taken from the Mylyn project.
The anti-pattern’s occurrences correspond to all the classes in the snapshot. But the refac-
torings applied only considered the relevant classes of each task. Hence, We observe a small
reduction in the number of anti-patterns. This result was expected because the number of
relevant files for each task (i.e., the developer’s context) is small compared to the number of
classes in a snapshot, and consequently, the number of refactoring candidates too.

Without Refactoring With Refactoring

0
20

40
60

80
10

0

Mylyn project

N
um

be
r o

r a
nt

i−
pa

tte
rn

s

Figure 4.7 Distribution of anti-pattern’s occurrences before and after refactoring based on
task context.

However, the accumulation of these small improvements (i.e., reductions of anti-patterns
occurrences) over a long period of time is likely to result in a significant improvement of the
design quality of the system. To verify this hypothesis, we accumulate the contexts of all the
individual tasks from the oldest to the most recent (ordered based on commit dates) and apply
our automated floss refactoring approach using the accumulated context. This allows us to
measure the accumulated impact of floss refactoring. We compute and compare the count of
anti-patterns for (1) the source code without refactoring, (2) the source code after applying
all the floss refactorings, and (3) the source code after performing a root-canal refactoring.
In Figure 4.8, we present a comparison of the the anti-pattern’s count for our three projects
before and after refactoring (floss and root-canal). To verify if the observed differences

39

(between the number of corrected anti-patterns for root-canal versus floss refactoring) are
statistically significant, we performed a Wilcoxon rank sum test [140] at 95% confidence level
(i.e., α = 5%). The test was statistically significant (i.e., p-value<0.05), indicating that the
distribution of the results is not the same for both groups. We also evaluated the magnitude
of the difference by computing the Cohen’s δ effect size (ES) [141]. The results show that
the difference is large for the three projects (ES≥ 0.8.).

�

�

�

Overall, we observe that our proposed automated floss refactoring approach can reduce ap-
proximately 50% of anti-patterns. This is a significant reduction considering the fact that
it does not disrupt the developer’s work flow, since it only recommends refactorings that
affect files on which the developer is already working (i.e., files from the task context).

On the contrary, relying on root-canal refactoring is expensive. The number of refactoring
opportunities detected go from 167 (Mylyn) to 2068 (Platform). However, applying floss
refactoring with ReCon can alleviate this cost. From the individual tasks studied in this
work we found that the tasks with more refactoring opportunities are: Mylyn task number
87670: 34; PDE task number 84503: 50; and Platform task number 82540: 63. These
number of refactorings, which might not be trivial to be generated manually, are feasible to
be evaluated and applied for a developer with the help of our approach.

Nevertheless, after applying ReCon during the development and maintenance of a software
system, developers can still perform a root-canal refactoring prior to the release of the system
to remove the remaining anti-patterns. Figure 4.8 shows that a root-canal refactoring can
be very effective at removing anti-patterns in a system. After the root-canal refactoring
of Mylyn, PDE, and Platform, only respectively 1, 4, and 8 anti-patterns remained in the
projects. We manually inspect these cases, and found that the anti-pattern remaining in
Mylyn, that is a LP instance, was not removed because is inside an inner class for which
our implementation of introduce parameter object is not suitable; in PDE two instances of
lazy class could not be removed due to an issue with a missing package name; in Platform,
half of the anti-patterns of SG type were not corrected because they refer to abstract classes
belonging to external APIs (java.util, and java.io). Beside this drawbacks, we consider
that the ReCon results are stable, and not biased towards any anti-pattern type.

In the following, we will analyze the performance of the metaheuristics employed in this work,
and their corresponding resources consumption.

In Table 4.4 we present the average count of anti-patterns of the 30 independent runs for the
three metaheuristic algorithms and random search in the accumulated floss refactoring sce-

40

Table 4.4 Count of anti-patterns after applying floss refactoring.
Anti-pattern Original GA RS SA VNS

MYLYN
SG 0 0 0 0 0
SC 0 0 0 0 0
LC 27 19 25 19 19
LP 140 49 94 49 49

Total 167 68 119 68 68
PDE

SG 31 2 3 2 2
SC 0 0 0 0 0
LC 1205 180 193 180 180
LP 2276 1229 1320 1229 1229

Total 3512 1411 1516 1411 1411
PLATFORM

SG 30 22 23 22 22
SC 0 0 0 0 0
LC 1242 336 341 336 336
LP 2286 1595 1651 1595 1595

Total 3558 1953 2015 1953 1953

nario. As we can observe, the three metaheuristics are capable of removing the same number
of anti-patterns, thought with some variations in the amount of memory and execution time
required.

With respect to the instances of anti-patterns removed, there is little difference between the
refactoring solutions found by each different metaheuristic, especially if we consider that
the detection and generation of refactoring operations process is the same. However, the
CPU time, and to some extent the memory consumption, that one algorithm takes to find
the best combination of the refactorings is where we found more interesting differences. To
corroborate this point, we manually compare the refactorings sequences and found that most
of the differences are related to the position in which each metaheuristic includes them in the
sequence. This is true for the set of refactorings that are not conflicted, and do not required
an specific order to be applied.

We also observe that metaheuristics overcome random search in all the projects studied. To
corroborate this result, we apply the same statistical test, Wilcoxon rank sum and Cohen’s δ
effect size (ES), and found that the results are statistically different (p-value<0.05), and that
difference between the metaheuristics and random search is medium (ES = 0.07) in terms of
anti-patterns correction.

The resources usage is depicted in Figure 4.9 for each metaheuristic. We can observe that
SA has the fastest execution among the three metaheuristics followed close by GA. We apply
Wilcoxon test and Cohen’s δ ES, and found that this result is statistically significant in
comparison with GA and VNS, and with a large difference (ES = 1.09, 7.31). Concerning
memory usage, the difference is also significant, but with a small difference for GA (ES =

41

0.037) and large for VNS (ES =5.68).

In a scenario where developers are more interested in obtaining a solution fastest, SA is
the recommended algorithm. GA consumes less memory but with more variability in the
execution time. VNS report the highest values for memory consumption and execution time,
given that it has to analyze many neighborhoods before finding an optimal solution. In any
case the execution time required to perform floss refactoring using context in each individual
task is less than 200 seconds in average (in case someone opts for VNS), which is acceptable
when performing a coding task.

O
rig

in
al

Fl
os

s
R

oo
t−

ca
na

l

Mylyn

0 50 100 150 200

167

68

1

O
rig

in
al

Fl
os

s
R

oo
t−

ca
na

l

PDE

0 1000 2000 3000 4000

3512

1412

4

O
rig

in
al

Fl
os

s
R

oo
t−

ca
na

l

Platform

0 1000 2000 3000 4000

3558

1953

8

Figure 4.8 Anti-patterns occurrences after applying floss and root canal refactoring.

Performance of the algorithms

Finally, in Table 4.5 we present the resources usage for root-canal using SA metaheuristic, as
it is the one to find solutions in the shortest time. As we can expect, the execution time and
memory required to perform is bigger for root-canal refactoring, and these values increase
proportionally to the number of classes in the studied project. This is expected since we look
for refactoring opportunities in all the classes in the system in root-canal refactoring, while
in floss refactoring we focus only on classes that are in the developer’s context. It is clear
that there is a trade-off to make between the quality achieved and resources consumed, as

42

SA GA VNS

0
10

0
20

0
30

0
40

0
50

0
60

0

Execution time in sec.

SA GA VNS

20
0

30
0

40
0

50
0

60
0

Memory usage in Mb.

Figure 4.9 Resources consumption for each Algorithm when performing floss refactoring.

the number of anti-patterns removed is less for floss refactoring.

Table 4.5 Resources usage for root-canal using SA.
Program Memory usage (Mb). Execution time (hh:mm:ss)
Mylyn 933.78 00:48:58
PDE 4505.83 10:44:15

Platform 5936.74 14:09:01

Quality evaluation

After analyzing our approach in terms of memory usage and execution time, we also consider
important to assess the impact on the quality of the programs analyzed. For this purpose,
we use the QMOOD [40] (cf. Section 2.4) to evaluate the effect of the proposed refactoring
sequences on five quality attributes.

To compute the quality gain, we use the formula proposed in [142] where the total gain
in quality G for each of the considered quality attributes qi before and after refactoring is
estimated as:

Gqi = q′i − qi, (4.2)

where q′i and qi represents the value of the quality attribute i after and before refactoring.

In Figure 4.10, we can observe the quality gain obtained for each selected QMOOD attributes
after applying root-canal and accumulated floss refactoring using context. In both cases, the

43

quality increases according to the five attributes. Reusability is the quality attribute that has
the highest gain, while effectiveness has the lowest one (0.01,0.009), follow by flexibility (0.27,
0.19). We suggest that the negligible gain in effectiveness is due to the combination of metrics
that does not penalize coupling like (DCC), that is impacted by the refactorings proposed
in the case study. On the contrary, we observe that extendibility, which penalizes DCC with
-0.5, show better results (0.46, 0.34). The low gain in flexibility is presumably due to the fact
that a big portion of the weight of that quality attribute is on the Number of polymorphism
methods (NOP) metric. This metric refers to methods that are overridden by one or more
descendent classes. Since the refactorings applied on the programs do not override existing
methods, as it is not required by the definition of the anti-patterns analyzed, the increment
of this quality attribute is small. On the contrary, the reusability attribute which gives a
high weighing to Design Size (Number of classes), and Messaging (communication between
classes) metrics benefits from the decomposition on long parameter list, which is one of
the most predominant anti-patterns in the three studied projects. Finally, the substantial
increment in understandability reflects a drop in the complexity of the design structure.
Understandability is one of the most desired attributes to achieve from the point of view of
developers, as it eases the addition of new features and enhancements.

Reusability Flexibility Understandability Extendibility Effectiveness

Root−channel Ref

Floss Ref

Design quality improvement according to QMOOD model

Quality Function

Q
ua

lit
y

G
ai

n

0
2

4
6

8

Figure 4.10 The impact of the best refactoring solutions on QMOOD quality attributes.

44

�

�

	
To summarize this section, we conclude that ReCON can successfully improve the quality
of a software system, not only with respect to the number of anti-patterns corrected, but
also in terms of reusability, understandability, and to a minor extent, flexibility.

4.5 Discussion

Results from Section 4.4.5 show that our proposed approach ReCon is effective at correcting
anti-patterns in software systems. ReCon can find refactoring solutions in a reasonable time
using a reasonable amount of resources. The main contribution of ReCon is leveraging task
context information to prioritize the refactoring of classes that undergo changes more often.
This is especially convenient if we consider that the length of the sequence of refactorings is
shorter in a floss scenario than a root canal one. The complexity of the scheduling of the
refactorings is also simplified, as the number of possible conflicts is reduced, and finally it
does not make too much sense to modify classes that do not change very often.

By contrasting the quality of the resulting design before and after refactoring using Recon in
floss and root-canal scenarios give us an insight of the usefulness of the refactorings proposed
not only in terms of anti-patterns correction, but in other quality attributes like coupling
and design size.

Concerning floss and root-canal scenarios, one interesting finding is the distribution of anti-
patterns among the classes that are touch by developers during a task context. For example,
for Mylyn project, which has a total of 2365 classes, we covered 72% of them in the floss
accumulated scenario (1697) and remove approximately 59% of anti-patterns; that means
that 28% of the classes, which were not modified in our collected dataset, contain 41%
of anti-patterns. The coverage of classes in PDE and Platform is considerably less, 24%
and 11%; however, the remaining anti-patterns in the untouched classes are 40% and 55%
respectively. These results suggest that for PDE and Platform, 60% of the anti-patterns
studied are concentrated in a small portion of the system.

Finally, ReCon do not require any set of bad code examples to work like previous ap-
proaches [24, 36, 130, 142], so it can be used directly out of the box. Another advantage
of ReCon is that the thresholds used for detecting the analyzed anti-patterns, can be easily
modified according to the user needs through SAD, without modifying any line of code in
the implementation of ReCon.

45

4.6 Threats to validity

We now discuss the threats to validity of our study following common guidelines for empirical
studies [143].

Construct validity threats concern the relation between theory and observation. Our modeling
approach assumes that each anti-pattern is of equal importance, when in reality, this may
not be the case.

Threats to internal validity concern our selection of subject systems, tools, and analysis
method. The accuracy of DECOR impacts our results. DECOR is an academic approach
which has been reported to achieve high recall and reasonable precision [52]. However,
other anti-pattern detection techniques and tools may provide different results. The rational
behind using Mylyn’s interaction histories is that Mylyn plug-in is the only tool that has
been applied to several open-source systems to gather developers’ interactions and these are
publicly available. Note that the systems analyzed are the top-three systems with more
interaction histories.

Conclusion validity threats are related to the violation of the assumptions of the statistical
tests and the diversity of our dataset. We used non-parametric tests (Wilcoxon rank sum)
that make no assertion about the distribution of the data. We used data from three open-
source systems that have different sizes and involve many developers.

External validity threats relate to the generalization of our results. Because our subject
projects are open-source and because we used a particular yet representative subset of anti-
patterns as proxy for software design quality, we cannot guarantee that the findings of this
study can generalize to proprietary software systems and other open-source systems. In
the future, we plan to analyze more systems, including proprietary and including different
programming languages, to draw more general conclusions.

Reliability validity threats concern the possibility of replicating this study. All the raw data
used in this chapter are available in Eclipse Bugzilla. The software systems studied in this
chapter are also available online for the public.

4.7 Chapter Summary

In this chapter, we highlighted the main drawbacks of existing refactoring approaches that
propose refactoring solutions without considering developer’s task context, even though pre-
vious studies (e.g., [42]) have found that developers prefer refactoring suggestions that can
be applied to files that are active in their workspace.

46

This lack of consideration for developers’ context may explain the poor adoption of automated
refactoring approaches in industry. In addition, many of the existing approaches require that
developers input a set of bad code examples, to generate detection rules, or a desired model
to generate the corresponding refactoring solution(s). These requirements put extra work
on developers, slowing the refactoring process, and even rendering it impractical in certain
cases. Specifically, we set out to address the following question:

�
�

�
�

Central Question: Is it possible to improve automated refactoring by leveraging devel-
oper’s task context?

To answer this question, we proposed ReCon, an automated refactoring approach that lever-
ages developer’s context and metaheuristic techniques to compute the best sequence of refac-
toring that affects only entities in the developer’s context. We performed a case study using
three open-source systems and found that ReCon can successfully correct more than 50% of
anti-patterns in a software system using less resources than the traditional approaches from
the literature. More importantly, ReCon does not disrupt the developer’s work flow, since
it only recommends refactorings that affect files on which the developer is already working
(i.e., files from the task context).

We also assess the quality of the systems subject of this study before and after applying
ReCon, using five quality attributes defined in the QMOOD model [40]. Results show that
ReCon can achieve a significant quality improvement in terms of reusability, understandibility,
extendibility and to some extent flexibility, while effectiveness reports a negligible increment.

47

CHAPTER 5 EFFICIENT REFACTORING SCHEDULE

5.1 Introduction

In Section 2.2.3, we formally presented the refactoring scheduling problem, and provided a
formulation (Equation (2.1)) to compute the size of the refactoring search space for a set
of refactoring candidate solutions generated to be applied in a software system. We also
mentioned that most of the existing refactoring approaches rely on metaheuristics to solve
the refactoring schedule problem. The reason is that the objective function (typically the
number of anti-patterns occurrences) depends in a non-trivial way on the code of the original
and the refactored version. This fact makes it difficult to model the problem using a closed
algebraic expression and, hence, limits the kind of algorithms and techniques that can be
used to solve the problem.

From the plethora of metaheuristic techniques, many SBSE researchers have implemented
Evolutionary Algorithms (EAs) [45, 76, 144, 145, 43, 36, 26, 142] to solve the refactoring
scheduling problem.

The problem of using EAs is that they typically require large number of evaluations (of
solutions) to converge to optimal results. This translates into larger execution times (cf. sec-
tion 4.4.5, root-canal refactoring), and more developer’s effort to evaluate and apply the
proposed solutions. To address this limitations, some researchers have proposed refactor-
ing approaches that consider conflicts between refactorings to reduce the search-space size.
For example, Liu et al. [82] proposed an approach to iteratively select the most promising
refactoring operations in terms of design quality, while removing the ones that are in con-
flict with them, until there are no more refactorings candidates left. In another work, the
same research group [83] proposed a refactoring approach for reducing the effort required for
removing different type of anti-patterns using pairwise analysis. The idea is to refactor the
anti-patterns that can mitigate the negative effects of other types of anti-patterns, (e.g., re-
moving code duplication also affects anti-patterns related to the size of classes/methods).
These approaches will maximize the scheduling of refactorings with the higher quality effect.
However, they still require developers to find a list of refactoring candidates, and to apply
the list to their code.

In this chapter, we aim to close the gap, by providing full-automated refactoring support
for developers, that covers all the main steps of the improvement of software design quality
through automatic refactoring, i.e., the (1) detection of classes that contain anti-patterns;

48

(2) the generation of refactoring candidates to improve the design quality of the classes
detected in (1); (3) the search for an optimal refactoring order; and (4) the application of
the refactoring order from (3).

We, therefore, set out to address the following question:

�
�

�
�

Central Question: Is it possible to improve automated refactoring by proposing an effi-
cient scheduling?

To achieve this goal, we propose a new heuristic approach called RePOR (Refactoring ap-
proach based on PartialOrderReduction). Partial order reduction is a popular technique for
controlling state space explosion in model checking [146]. The intuition is to reduce the num-
ber of refactoring sequences to be explored by removing equivalent sequences (i.e., refactoring
sequences that leads to the same design). As a result, less search effort is required than well-
known metaheuristic approaches. To evaluate RePOR, we conduct a series of experiments
over a testbed of five OSS and compare the results with Genetic Algorithm (GA) [147], Ant
Colony optimization (ACO) [148], and the conflict-aware refactoring scheduling approach
proposed by Liu et al. [82] (referred to as LIU in this chapter). We show that the solutions
obtained by RePOR overcome the ones obtained by the above-mentioned state-of-the-art op-
timization techniques in terms of performance (i.e., execution time) and effort (i.e., number
of refactorings applied).

5.2 Reducing the search-space size of the refactoring scheduling problem

As we discuss in Section 2.2.3, search algorithms start by generating one or more random
sequences. Next, the quality of each sequence is computed by applying it to the software
system in question, and measuring the improvement in the quality attributes of interest using
an objective function (a.k.a.fitness function).

We can evaluate the quality of a refactoring sequence SR using the formulation presented in
Equation (5.1).

Q(SR) =
∑
k∈K

Q(srk); with Q(srk) = AC(k′)− AC(k) (5.1)

Where SR is a subset of R; R is the set of refactorings to be applied in a system SY S; K
is the set of classes in SY S, K ∈ SY S; srk is a subset of SR that modifies class k (k ∈ K).

49

Each sub-function Q(srk) is computed by subtracting the number of occurrences of anti-
patterns in class k after applying srk to k (i.e., AC(k′)) and the number of occurrences of
anti-patterns before refactoring (i.e., AC(k)) . Note that we use the number of occurrences of
anti-patterns as a proxy of design quality. The outcome of Q(SR) is related to the presence
and the order of refactorings in SR.

Hence, we suggest that refactorings should be clustered depending on the classes that they
affect. In this way, they can be optimized separately. Since the order of appearance of
refactorings that affect different classes in a sequence is irrelevant, we can reduce the number
of refactoring operations that we need to evaluate. Let us reuse the example proposed in
Section 2.2.3, that is a set of refactorings: R = {A,B} to be scheduled. We recall that
applying Equation (2.1) to our example gives us 5 possible sequences: <>, < A >, < B >,
< A,B >, < B,A >, if and only if (iff) we assume that each permutation leads to a different
solution. Otherwise, < A,B > and < B,A > are two different representations for the same
solution, which leaves us with only 4 different solutions. We also mentioned that having
refactorings that affect the same class, the resultant design may vary depending on the order
of application of those refactorings.

Let us represent the dependency between refactorings as an undirected graph GD, where an
edge (ru, rv) ∈ E exists iff ru, rv ∈ Rk. k ∈ K, where K is the set of classes in a system, and
Rk is the set of refactorings that affect class k, Rk ⊂ R.

We use GD to find the connected components (CCAP). A connected component is a maximal
subgraph where all the pairs of vertices are connected by a path. Connected components
impose a partial order over the refactoring operations. We borrow the idea of partial order
reduction from model checking [146], to express the removal of sequences of refactorings that
lead to the same design.

The set of refactorings R and classes K can be used to form a bipartite graph GB=(R,K,E),
where each refactoring r ∈ R is connected to the classes it affects. GB is linked to the structure
of the objective function, where a set of refactorings modify a class, and the application or
not of these refactorings affect the number of anti-patterns existing in this class.

Another factor that affects the size of the search-space of the refactoring problem is the
occurrences of conflicts. We distinguish to kind of conflicts, sequential dependency conflicts
and mutual exclusion conflicts. We elaborate more on these two kind of conflicts in the
following.

— Given two refactorings ri and rj, ri has a sequential dependency conflict with rj iff rj
cannot be applied before ri. We represent sequential dependency conflicts as follows:
r1 → r2, which means that r1 can be followed by r2, but r2 cannot be followed by r1.

50

Note that conflicts are directional, i.e., the fact that applying rj disables ri does not
necessarily means that ri disables rj.

— Given two refactorings ri and rj, ri has a mutual exclusion conflict with rj iff ri and
rj cannot be applied together in any order. We represent mutual exclusion with the
following notation: r1 6↔ r2.

In the extreme case where no conflicts exist among the pairs of refactoring opportunities (i.e.,
all pairs commute), only the presence or absence of a refactoring opportunity in a sequence
makes a difference in the sequence, and the search space can be reduced to 2n refactoring
sequences.

We model the conflicts between refactorings using a directed graph GC , where the set of
refactoring opportunities R is the set of vertices and an edge (u, v) ∈ E exists between two
refactorings u and v if there is a conflict between refactorings u and v.

To better illustrate the refactoring scheduling problem, and the effect of considering depen-
dencies and conflicts between refactorings has on the size of the search-space, we present a
motivating example in Listing 5.1.

Listing 5.1 A refactoring motivating example
1 c l a s s Geometry{
2 double ca lcAreaRectang le (Rectangle p1) {
3 r e turn p1 .Width () ∗p1 . Height () ;
4 }
5 void longParameterListMethod (i n t p1 , i n t p2 , . . . , i n t p15) {
6 . . .
7 }
8 }
9 c l a s s Rectangle {

10 pr i va t e double width ;
11 pr i va t e double he ight ;
12 pub l i c double Width () {
13 r e turn width ;
14 }
15 pub l i c double Height () {
16 r e turn he ight ;
17 }
18 }
19 c l a s s Shape{
20 . . .
21 }

The refactorings presented in Table 5.1 can be applied to refactor the classes described in
Listing 5.1.

Applying Equation (2.1) to the example shown in Listing 5.1, we have that the number of
refactoring sequences is S = be · 3!c = b16.3097c = 16. A simple manual enumeration, shown

51

Table 5.1 List of refactorings candidates for the example from Listing 5.1
ID Type Source class Method Target Class
r1 Move method Geometry calcAreaRectangle Rectangle
r2 Inline Class Rectangle All fields and methods Shape
r3 Introduce Parameter Object Geometry longParameterListMethod GeometryParamObj (new)

in Table 5.2 confirms this evaluation.

Table 5.2 Enumeration of possible refactoring sequences for the set of refactoring operations
{r1, r2, r3}.

sequence elements sequence elements
1. None 9. r3, r1
2. r1 10. r3, r2
3. r2 11. r1, r2, r3
4. r3 12. r1, r3, r2
5. r1, r2 13. r2, r1, r3
6. r1, r3 14. r2, r3, r1
7. r2, r1 15. r3, r2, r1
8. r2, r3 16. r3, r1, r2

Note that in Equation (2.1) we assume that a permutation of a subset of refactoring opera-
tions always leads to a different software design. However, this assumption may not holds in
all cases. In Table 5.2 we find pairs of refactorings where the application order is irrelevant,
e.g., the application order of r1 and r3 in sequences 6, 9. Hence, it is possible to reduce even
more the search-space by removing these permutations as they lead to the same design (same
solution). This occurs because they affect different code segments (the method and target
class is different for r1 and r3) , i.e., they are unrelated.

In addition, when a conflict exists between refactorings, it is possible to reduce the size of
the search space further. For example, consider the sequential dependency conflict between
r1, r2, that is r2 cannot be applied before r1 (inlining class Rectangle invalidates any move
method refactoring from/to that class). Hence, by removing redundant solutions, and invalid
solutions (solutions with elements that are conflicted) we can reduce the search-space size
of the motivating example by half (sequences 1, 2, 3, 4, 5, 6, 8 and 11). Thus, the value
obtained after applying Equation (2.1) should be used as an upper bound of the search-
space size, as long as we assume that applying a refactoring sequence does not create new
refactoring opportunities that were not in the original list. If this happens, the number of
possible refactorings can be larger than be · n!c. However, in a typical scenario, software
maintainers would repeat the process of finding refactoring opportunities until: (1) it is not
possible to apply more refactorings, or (2) they are satisfied with the design quality.

52

5.3 Refactoring approach based on Partial Order Reduction

In this section we present the foundations of RePOR. RePOR is comprised of 7 steps depicted
in Algorithm 1

Algorithm 1: RePOR
Input : System to refactor (SYS), Maximum number of permutations (threshold)
Output: An optimal sequence of refactoring operations (SR)

1 Steps RePOR(SYS, threshold)
2 AM=code-design model generation (SYS)
3 A = Detect Anti-patterns(AM)
4 R = Generate set of refactoring candidates(AM,A)
5 GD = Build Graph of dependencies between refactorings and anti-patterns(AM,R,A)
6 CCAP = Find connected components (GD)
7 GC = Build Graph of conflicts between refactorings (AM,LR)
8 SR = Schedule sequence of refactorings(CCAP, GC , AM)
9 Procedure Schedule sequence of refactorings(CCAP, GC , AM):

10 SR = 0
11 for each ccap ∈ CCAP do
12 ccap.RemoveInvalidRefactorings(SR)
13 if ccap.size == 0 then
14 continue
15 else
16 List permuts = enumeratePermutations(ccap)
17 if permuts ≤ threshold then
18 SR.addAll(extractBestPermutation(AM,GC , permuts))
19 else
20 SR.addAll(getF irstV alidSequenceFromccap(AM,GC , ccap,R))
21 end if
22 end if
23 end for
24 return SR

25 end

5.3.1 Step 1: Code-design model generation

In this step we generate a light-weight representation (a code meta-model) of a software
system (SYS), using static code analysis techniques, with the aim of evolving the current
design into an improved version in terms of design quality. A code meta-model describes
systems at different levels of abstractions. We consider three levels of abstractions to model
systems. A code-level model (inspired by UML) which includes all of the constituents found
in any object-oriented system: classes, interfaces, methods, and fields. An idiom-level model
which is a code-level model extended with binary-class relationships, detected using static
analysis. A design-level model that contains information about occurrences of design mo-
tifs or of code smells and anti-patterns. A code-meta model must differentiate among use,
association, aggregation, and composition relationships. It should also provide methods to
manipulate the design model and generate other models. The objective of this step is to
manipulate the design model of a system programmatically. Hence, the code meta-model is
used to detect anti-patterns, apply refactoring sequences and evaluate their impact in the

53

design quality of a system. More information related to code meta-models, design motifs and
micro-architecture identification can be found in [149, 150].

5.3.2 Step 2: Detect Anti-patterns

In this step we detect anti-patterns in the meta-model using any available detection tool.
The output of this step is a set of anti-patterns instances (A), with the qualified name of the
classes and constituents that participate in each detected anti-pattern.

5.3.3 Step 3: Generate set of refactoring candidates (R)

After we generate a set of anti-patterns that we want to correct from the previous step, we
generate a list of refactoring operations based on the type of anti-patterns. For example, in
the case of a Blob class, which is a large controller class surrounded by data classes, we may
start by moving functionality to related classes in order to reduce size and improve cohesion
using move method refactoring. We may have more than one possible targets to move a
method from the Blob class, which become refactoring candidates, and our approach should
be able to select the move method refactoring that improves the most the design quality of
the system after refactoring.

5.3.4 Step 4: Build refactorings dependency graph (GD)

To avoid evaluating permutations that lead to the same design, it is important to cluster
refactorings by the classes they are modifying.

5.3.5 Step 5: Find connected components (CCAP)

To guide the search of refactoring operations, once we have built the refactorings dependency
graph (GD), we proceed to find the connected components of GD.

5.3.6 Step 6: Build refactorings conflict graph (GC)

As we mentioned before, conflicts arise when two or more refactorings affect the same classes
or their constituents (fields, methods, etc.). These conflicts should be considered when gen-
erating a refactoring schedule to avoid evaluating invalid sequences.

54

5.3.7 Step 7: Schedule a sequence of refactorings (SR)

In this final step, we iterate over all connected components, ccap ∈ CCAP , to schedule
refactorings that correct more anti-patterns (lines 11-25). At the beginning of the search,
the refactorings in sequence SR is empty (line 10). During the search process, we will add
refactorings to SR, that can disable other refactorings from R. Hence, we remove refactoring
operations that are no longer valid in every iteration of the main loop (line 12). If the number
of vertices in a ccap is zero after removing invalid refactorings, we continue with the next
connected component. Otherwise, we compute all possible permutations of the refactorings
in ccap (line 16). To enumerate all permutations of ccap, we use Algorithm G (General
permutation generator) from Knuth [151]. This algorithm generates all permutations with the
condition that every permutation is visited only once. Depending of the number of elements
in ccap, the computation time could be too long. The input parameter threshold is an
integer value which represents the maximum number of permutations that we can enumerate
without spending too much time in the enumeration process, and this value is empirically
determined according to the architecture of the test computer. If permuts ≤ threshold, we
call extractBestPermutation procedure to obtain the best permutation in terms of anti-
pattern correction, which is depicted in Algorithm 2. In case the number of permutations
is too large to be enumerated (line 19) we call method getF irstV alidSequenceFromccap to
find the first non-conflicted sequence of anti-patterns from the current ccap. We depict the
procedure in Algorithm 4.

Algorithm 2: Algorithm to extract the best permutation from a list of a set of integers
Input : Code design-model (AM), graph of conflicts GC , list of permutations (permuts)
Output: A list of refactorings (bestPermutation)

1 Procedure extractBestPermutation (AM, GC , permuts):
2 bestPermutScore = +∞
3 bestPermutation = new List
4 for row = 1 to row = permuts.size do
5 permut = new List
6 for col = 1 to col = permuts[1].size do
7 if GC .isTherePathBetweenNodes(permuts[row][col], permut)==false then
8 permut.add(permuts[row][col])
9 end if

10 end for
11 permutScore = evaluateImpactOfPermutation(permut,AM)
12 if permutScore < bestPermutScore then
13 bestPermutation = permut
14 bestPermutScore = permutScore

15 end if
16 end for
17 return bestPermutation

18 end

Algorithm 2 starts by initializing bestPermutScore to positive infinity (as we are performing
minimization) and bestPermutation to an empty list. The main for-loop (line 4), consists on

55

iteratively adding refactoring operations from the current permutation to permut. If the cur-
rent refactoring is conflicted with the refactorings already added, it continues to the next op-
eration until the end of the current permutation. Then, it evaluates the impact of the current
permutation (permutScore), and if is this value is less than the current bestPermutScore,
it replaces bestPermut and bestPermutScore with permut and bestPermutScore. Note
that the application of each permutation of refactorings can result in one of the following
outcomes: the permutation removes an anti-pattern in the source class; it does not remove
the anti-pattern in the source class (e.g., there are not enough move method refactorings
to substantially decompose a Blob class); removes the anti-pattern in the source class and
introduces an anti-pattern in the target class; or does not remove the anti-pattern in the
source class, but adds a new anti-pattern in the target class. The permutation with the best
score is returned (line 17).

Algorithm 3: Algorithm to evaluate a permutation in terms of the number of anti-pattern
it can remove

Input : A sequence of integers (permut), code-design model (AM), a set of refactoring candidates (R), bipartite
graph (GB)

Output: An integer value (score)
1 Procedure evaluateImpactOfPermutation(permut, AM, R):
2 score = 0
3 for col = 1 to col = permut.size do
4 r = R.getRefactoring(permut[col])
5 Ap = Detect Antipatterns(adj(r,GB))
6 if AM .ApplyRefactoring(r)==true then
7 Ap′ = Detect Antipatterns(adj(r,GB))
8 score=score+(Ap′-Ap)
9 else

10 permut.remove(r)
11 end if
12 end for
13 AM .rollbackSequence(permut,R, GB)
14 return score

15 end

In Algorithm 3 we present the procedure to evaluate a permutation in terms of the number
of anti-patterns that it corrects. The procedure starts by initializing the variable score = 0.
In line 3, we have a for loop to iterate over all refactorings in the permutation. Next, in line
5, we proceed to detect anti-patterns in the vertices adjacents to r in the bipartite graph,
i.e., adj(r,GB). The outcome of the detection is stored in Ap. Next, if the application of r
on the code-design model succeeds, we recompute the number of anti-patterns in the related
classes, adj(r,GB) again, this time in the refactored design. Variable score is computed by
subtracting the count of anti-patterns after refactoring (i.e., Ap′) from the count of anti-
patterns before refactoring (i.e., Ap), and adding this value to the current score. If r cannot
be applied to the model, we remove r from permut (line 10). This is done to reduce the
overhead of scheduling invalid refactorings. One may think that validating the existence

56

of conflicts between r and the refactorings previously scheduled in Algorithm 2 should be
enough to warrants a valid sequence. However, we cannot be totally sure until we apply the
refactoring sequence on the software system. Applying the refactoring on the software system
can be computationally expensive, specially for a search algorithm. As an alternative, we
use a code-design model that enables us to simulate the application of a refactoring on the
software system. At the end of the loop (line 12), we undo all the refactorings from permut

that were applied to the code-design model, and return score (lines 13-14).

Algorithm 4: Algorithm to obtain the first valid sequence from a set of refactorings
Input : Code design-model (AM), graph of conflicts GC , set of connected components (ccap), a set of refactoring

candidates (R), bipartite graph (GB)
Output: A sequence of refactorings (sequence)

1 Procedure getFirstValidSequenceFromccap (AM , GC , ccap, R, GB):
2 desiredEffect=-1
3 sequence=new list
4 tempRefactoringSeq=new list
5 for each element ∈ ccap do
6 score=0
7 r = R.getRefactoring(element)
8 if GC .isTherePathBetweenNodes(element, sequence)==true then
9 continue

10 end if
11 Ap = Detect Antipatterns(adj(r,GB))
12 if AM .ApplyRefactoring(r)==true then
13 Ap′ = Detect Antipatterns(adj(r,GB))
14 tempRefactoringSeq.add(element)
15 score=score+(Ap′ −Ap)
16 if score <= desiredEffect then
17 removeAntipattern = true
18 exit for
19 end if
20 end if
21 end for
22 AM .rollback(tempRefactoringSeq)
23 if removeAntipattern = true then
24 sequence = tempRefactoringSeq
25 end if
26 return sequence

27 end

Algorithm 4 starts at line 2, when variable desiredEffect is set to -1. This means that the
application of the sequence built from a ccap removes one anti-pattern (in the source class)
and do not add any anti-pattern in any related class. Next, a for loop (line 5) iterates the
elements in ccap. If element is conflicted with any of the refactorings already scheduled in
sequence, we skip to the next element. Otherwise, we perform anti-patterns detection on
the vertices adjacents to r in GB. The resulting value is stored in Ap. If the application
of r succeeds, we retrieve the participating elements of r from the refactored code-design
model, and detect anti-patterns again. Next, we add element to tempRefactoringSeq and
compute score, similar to Algorithm 3. If score is less or equal to desiredEffect, we set
removeAntipattern to true and exit the main loop. Finally, we rollback the applied refactor-

57

ings in the code-design model. If we succeeded in removing at least one anti-pattern instance,
we set sequence equal to tempRefactoringSeq. Otherwise, an empty sequence is returned.

5.4 Case Study

In this section, we conduct a case study to assess the effectiveness of RePOR at improving
the design quality of systems. The quality focus is the improvement of the design quality of
a software system through refactoring. The perspective is that of researchers interested in
developing automated refactoring tools for software systems, and practitioners interested in
improving the design quality of their software systems. The context consists of the four meta-
heuristics: Ant Colony Optimization (ACO), Genetic Algorithm (GA), LIU, and RePOR,
and five open-source systems (OSS). We select Ant Colony Optimization, Genetic Algorithm,
LIU to compare the results provided by RePOR as they are well-known techniques success-
fully used in previous studies for scheduling refactorings [25, 44, 82, 36, 145]. We choose the
five OSS according to the following criteria (1): systems belonging to different application
domains, (2) availability for replication, (3) use in previous studies concerning refactoring
and anti-patterns [52, 36] and (4) non-trivial systems that are likely to present conflict when
refactoring.

5.4.1 Research Questions

To better answer the central question of this chapter, we formulate the following research
questions:

(RQ1) To what extent can RePOR remove anti-patterns?
This research question aims to assess the effectiveness of RePOR at improving design quality.
We use the number of occurrences of anti-patterns as a proxy for design quality, as they
have been found to hinder system evolution [8], and to be correlated with the occurrence of
bugs [152]. Hence, the more anti-patterns removed the better.

(RQ2) How does the performance of RePOR compare to those of metaheuristics
ACO, GA, and the conflict-aware approach LIU from the literature, for the
correction of anti-patterns?
This research question aims to assess the performance of RePOR in terms of execution time
and effort. The rational of studying the execution time is that developers are advise to
perform refactoring regularly along with other coding activities [47]. Hence, the waiting
time for an algorithm to produce refactoring solutions should be small to be suitable for
working on the loop with developers. The rationale for studying refactoring effort is that

58

performing a long list of refactorings to achieve high-quality design improvement could lead
to an unrecognizable design for developers. It also increases the probability to introduce
regression, as it is not suitable to be reviewed by a human pair. Hence, we believe that from
developers’ perspective [28], it is important to minimize the number of necessary refactorings
to obtain a reasonable quality improvement.

5.4.2 Evaluation Method

In the following, we describe the approach followed to answer RQ1, RQ2.
All statistics have been performed using the R statistical environment 1. For all statistical
tests, we consider a significance level of 5%. ForRQ1, we measure the effectiveness of RePOR
at removing anti-patterns in software systems using the following dependent variable:

— Design Improvement (DI). DI represents the delta of anti-patterns occurrences between
the refactored system (SY S ′) and the original system (SY S) and it is computed using
the following formulation.

DI(SY S) = |AC(SY S ′)− AC(SY S)|
AC(SY S) × 100. (5.2)

Where AC(SY S) is the number of anti-patterns in a system SY S and AC(SY S) ≥ 0.
The value represents the improvement amount in percentage. High negative values are
desired.
The independent variable is the refactoring approach applied to each studied system.
We statistically compare the number of remaining anti-patterns after refactoring a
system using RePOR with the number of remaining anti-patterns when using other
refactoring approaches. Specifically, we test the following hypothesis H01: There is
no difference between the number of remaining anti-patterns of a system refactored us-
ing RePOR, and a system refactored using other refactoring approaches. We test the
hypothesis using a non-parametric test, i.e., the Mann-Whitney U test [153]. For es-
timating the magnitude of the differences of means between the number of remaining
anti-patterns in systems refactored by RePOR and systems refactored using other ap-
proaches, we use the non-parametric effect size measure Cliff’s δ ES, which indicates
the degree of overlap between two sample distributions [154]. ES values range from -1
(if all selected values in the first distribution are larger than the second distribution)
to +1 (if all selected values in the first distribution are smaller than the second distri-
bution). It is zero when two sample distributions are identical. Cliff’s δ effect size is

1. http://www.r-project.org/

59

considered small when 0.147 ≤ ES < 0.33, medium for 0.33 ≤ ES < 0.474, and large
for ES≥ 0.474 [155].

For RQ2, the dependent variables are the execution time and the effort:

— Execution Time (ET). ET represents the total CPU time for the algorithm thread
in milliseconds. CPU time is the time that a process is actually running (not wait-
ing on I/O or blocked by other threads that got CPU quantum). We use Oracle’s
java.lang.management library to measure this metric 2.

— Refactoring Effort (RE). We calculate the effort of refactoring by counting the number
of refactorings that are scheduled to remove an anti-pattern.

The independent variable is the refactoring approach. We test the following two null hypoth-
esis: H02 : There is no difference between the execution time of RePOR and the execution
time of the other studied refactoring approaches. H03 : There is no difference between the
refactoring effort incurred by RePOR and the refactoring effort incurred by other studied
refactoring approaches. To test H02, H03, we use the same statistical tests as in RQ1.

Solution representation.

We use a vector representation where each element is a refactoring operation (r) to be applied
(cf. Section 4.4).

Code Design-Model

The code design-model is generated using Ptidej tool suite [156].

Detection and correction of anti-patterns

To detect anti-patterns, we use DECOR (cf. Section 2.2.2). In this chapter, we consider
five types of anti-patterns, namely Blob (BL), Lazy Class (LC), Long Parameter List (LP),
Spaghetti Code (SC) and Speculative Generality (SG). These anti-patterns are well-recognized
by developers [7], and have been studied in previous works [4, 52, 135, 72].

The refactoring strategies that we developed to correct the anti-patterns studied in this
chapter were already introduced in Section 4.4, except for Blob Class. To correct Blob anti-
pattern, we leverage PADL to determine the number of methods and attributes of a class,
and compare it with the rest of the classes in the system (boxplox technique). Then, we
estimate the cohesion between its methods and attributes, and determine the existence of

2. https://docs.oracle.com/javase/8/docs/api/java/lang/management/package-summary.html

60

controlling relationships with other classes. After performing these inter-class analysis, we
can propose to move methods to redistribute the excess of functionality from Blob classes to
related classes. We follow the strategy proposed by Seng et al. [44] that consists of searching
for each method’s signature, candidates classes inside the list of parameter types; in case that
the parameter type is not primitive and the source code is not a library, we generate a move
method refactoring from Blob class to the parameter type. We also consider as candidate
classes to move methods, the field types of the defined in the Blob class.

Systems studied

In Table 5.3, we present information about the systems studied: number of classes (NOC),
number of lines of code ×103 (KLOC), and number of anti-patterns detected by type.

Table 5.3 Descriptive statistics about the studied systems.
System NOC KLOC BL LC LP SC SG Total
Apache Ant 1.8.2 697 191 57 40 35 3 6 141
ArgoUML 0.34 1754 183 131 25 281 1 19 457
GanttProject 1.10.2 188 44 47 4 68 5 6 130
JfreeChart 1.0.19 505 98 41 21 62 1 1 126
Xerces 2.7 540 71 56 25 119 2 3 205

In Table 5.4, we present the number of refactoring candidates that were automatically gen-
erated by RePOR.

Table 5.4 Number of refactoring candidates automatically generated for each studied system.
CH IC IPO MM RMWO Total

Ant
6 9 35 4269 3 4322

ArgoUML
19 25 281 2475 1 2800

Gantt Project
6 4 68 3861 5 3944

JfreeChart
1 21 62 4228 1 4313

Xerces
3 25 119 4118 2 4267

5.4.3 RePOR implementation

We instantiate RePOR as an Eclipse plug-in and compared it with three metaheuristics.
Design improvement (DI) is measured using Equation (5.2). The parameter threshold, de-
scribed in Section 5.3.7, is set using the following criterion: a value for which the number of

61

permutations can be stored in memory. To determine this value, we performed 30 indepen-
dent executions for each of the systems studied in a Windows 10 64-bit, Intel Core 5 at 2.30
GHz, 12 GB of memory machine, and record the number of permutations that we can store
for each ccap, and found that the maximum number of permutations that we can store in
memory is threshold = 10! = 3, 628, 800.

The directed graph of conflicts (GC) is used for the three metaheuristics to avoid scheduling
invalid refactorings. Due to the random nature of the metaheuristics studied (i.e., ACO and
GA) it is necessary to perform several independent runs to have an idea of the behavior of
the algorithms. Hence, we execute 30 independent runs for all the approaches studied and
for each system. This is a typical minimum value (i.e., 30 runs) used in the search-based
research community to have enough experimental data to perform a statistical analysis.

With respect to the search of the connected components in the graph of dependencies between
refactorings (GD), we use the implementation proposed by Sedgewick and Wayne [157] which
uses a recursive depth-first search algorithm.

The stopping criteria for the metaheuristics studied has to be uniform to provide a fair
comparison. While in RePOR and LIU the stopping criteria is determined by the number
of vertices in the refactoring dependency and conflict graphs, for ACO and GA, the number
of evaluations (transformations applied to the randomly-generated initial solutions) required
to find an optimal solution cannot be determined before hand. Typically, researchers use
number of evaluations or execution time as stopping criteria. We use number of evaluations
as the stopping criterion, with a maximum of one thousand evaluations (for each system).
This value was empirically determined in our previous works [144, 145].

The next paragraphs disclose in detail the implementations of ACO, GA, and LIU used in
this case study.

5.4.4 Ant Colony Optimization Implementation

Ant Colony Optimization (ACO) [148] is a constructive metaheuristic, inspired by the be-
havior of real ants, that has been successfully applied in solving NP-hard problems, i.e.,
problems that in theory cannot be solved in polynomial bounded computation time, such
as routing (traveling salesman, vehicle routing), assignment (graph coloring, frequency as-
signment), scheduling (job shop, flow shop), network routing (connection-oriented network
routing), etc. The benefits of using ACO are: rapid discovery of good solutions, distributed
computation which avoid premature convergence like in local search, and greedy heuristics
which helps to discover acceptable solutions in the early stages of the search process. In

62

our ACO implementation, the ants are artificial agents that cooperate to build a path in a
directed graph G = (S, T) where S is the set of nodes and T ⊆ S × S is the set of arcs. A
finite path over the graph is a sequence of nodes (refactorings operations) π = s1, s2, . . . , sn

where si ∈ S for i = 1, 2, . . . , n. We denote πi the ith node of the sequence and we use |π| to
refer to the length of the path, i.e., the number of nodes of π.

Our ACO implementation corresponds to a simple ACO [148], where the best ant in the
colony updates the pheromone matrix. In Algorithm 5 we describe the main steps of ACO
implementation. The steps from line 2 to 5 are the same steps performed by RePOR, and
the main algorithm starts in Line 8. In the algorithm, the path traversed by the ith artificial
ant is denoted with ai. We use |ai| to refer to the length of the path, the jth node of the path
is denoted with aij, and the last node with ai∗. We denote with T (s) to the set of successor
nodes of node ai∗. We use the + operator to indicate concatenation between paths. The
maximum value for |ai| is the number of elements in R (Line 3) i.e., λant. The search process
starts at line 8 where the pheromone trails are initialized with the same value: a random
number between 0 and 1. After the initialization, the ants start the path construction from
different nodes, and the algorithm is executed during a given number of steps m (line 10).
Inside the loop, each ant builds a path randomly selecting the next node according to the
pheromone (τij) and the heuristic value (ηij) associated to each arc (i, j) (Line 14). In fact,
if the kth ant is in node i, it selects node j with probability

pij = [τij]α[ηij]β∑
k∈Ni

[τik]α[ηik]β , where pij is the probability of an ant to move from node i, to node j. τij
is the trail intensity which provides information about how many ants have passed through
this path. Ni is the set of successor nodes from node i. ηij is an associated heuristic value.
k is a mute variable whose domain is the set of successors nodes. The concrete expression
is ηij = h(j), where h(j) is the score assigned to the candidate refactoring operation by a
heuristic function. The construction phase is iterated until the ant reaches the maximum
length λant, or the current node has no successors in the graph (Line 13).

Once an ant has built a path, it is necessary to evaluate it on-the-fly. We generate a clone of
the original design (Line 17) and for each node in ak we apply its corresponding refactoring
operation. Then, the algorithm performs anti-patterns’ detection (Line 21) in the resulting
model. The design quality is evaluated according to the defined objective function. A good
solution is a sequence that corrects more anti-patterns.

After the construction phase, the pheromone trails are updated (Line 28) to take into ac-
count the quality of the candidate solutions previously built by the ants. The pheromone
update follows the expression: τij ← ρτij + f(abest),∀(i, j) ∈ abest, where ρ is the pheromone
evaporation rate and it holds that 0 ≤ ρ ≤ 1. On the other hand, f(abest) is the amount of

63

pheromone that the best-ant-path, ever found, deposits on arc (i, j).

The algorithm is finalized whenever the algorithm reaches one of the following conditions:

1. We reach the maximum number of steps (msteps).

2. We reach the optimal state, i.e., The number of classes with anti-patterns is zero (NDC =
0).

Algorithm 5: Ant Colony implementation for scheduling refactoring
Input : System to refactor (SYS)
Output: An optimal sequence of refactoring operations (SR)

1 Steps ACO(SYS)
2 AM=code-design model generation (SYS)
3 Ap = Detect Anti-patterns(AM)
4 R = Generate set of refactoring candidates(AM,A)
5 GC = Build Graph of conflicts between refactorings and anti-patterns (AM,LR)
6 SR = Ant Colony Optimization for refactoring(GC , AM)
7 Procedure Ant Colony Optimization for refactoring(GC , AM):
8 τ = initialize_pheromone()
9 step = 1

10 while step ≤ msteps AND Ap 6= 0 do
11 for k = 1 to colsize do
12 ak = null

13 while
∣∣ak∣∣ ≤ λant AND T (ak∗)− ak 6= ∅ do

14 node = select_successor(GC , T (ak∗), τ, η)
15 ak = ak + node

16 end while
17 AM ′ = AM.clone()
18 for all node ∈ ak do
19 apply_refactorings(AM ′, node)
20 end for
21 ak.Ap = detect_antipatterns(AM ′)
22 if DI(ak) < DI(abest) then
23 abest = ak

24 Ap = abest.Ap

25 end if
26 end for
27 τ = pheromone_evaporation(τ, ρ)
28 τ = pheromone_update(τ, abest)
29 step = step+ 1
30 end while
31 return abest

32 end

ACO heuristic function

The heuristic value (ηij) is calculated by a function that produces an integer value that
defines how beneficial is to apply a refactoring r to a class in the system. According to the
number of coexisting anti-patterns in the source class, we assign a score that increases with
the benefits of applying r on each of the detected anti-patterns in a class. To determine the
score, we assign for each refactoring type, an integer value in the range of -2 to 2, where
-2 represents a negative effect for a particular anti-pattern, and 2 a very desirable effect,

64

i.e., complete correction. Let us take the following example: suppose that class A has two
coexisting anti-patterns namely LC and LP. The suggested refactorings for correcting those
anti-patterns are inline class and introduce parameter-object, respectively. Suppose that we
want to evaluate the goodness of node 1, inline class. For the first defect (LC) we give a
score of 2, as it is the ideal refactoring for correcting LC, and 0 (no benefit or detriment) to
LP; then the total score for node 1 will be 2 (2+0) as well as for node 2. On the contrary,
suppose that class A has two defects (SC and LP), and we want to prioritize the refactoring
of SC over LP. Then, we could assign a heuristic value of 2 to RO type replace method with
method object, when a class has SC, and 1 to introduce parameter-object, when a class has
LP. In this way the sum of scores for this example will be (2+0), and (1+0) respectively,
having more probability to choose the node that corrects SC over the one that corrects LP.
The heuristic component ηik cannot accept values equal to zero. Thus, we compute 2score to
provide a value in the domain of natural numbers.

In Table 5.5 we show the parameters used for ACO. These parameters are not set in an
arbitrary way, but they are the result of running ACO with different configurations 30 times,
in a factorial design. For example, to select the importance of the heuristic in ACO, we tried
the following couples: no heuristic (α = 1, β = 0), same importance (α = 1, β = 1), more
importance to pheromone (α = 2, β = 1) and so on.

Table 5.5 Parameters of the Ant Colony Optmization algorithm for refactoring scheduling.
Ant Colony Optimization

Parameter Value Parameter Value
msteps 10 ρ 0.8
colsize 100 β 2.0
λant |R| α 1.0

5.4.5 Genetic Algorithm implementation

The GA used in this dissertation is a generational genetic algorithm (gGA). In gGA, half of
the population is selected and crossed; next, the resulting offspring is mutated and inserted
into the population replacing the old individuals.

In Algorithm 6, we describe the main steps of our GA implementation. We define P as a
list of refactoring sequences s ∈ P . Lines from 1 to 6 are the initialization steps and the
main algorithm starts in line 7. The population size for the experiments is 100 individuals.
In Line 8, the population is initialized with randomly generated refactoring sequences, and
evaluated in Line 10. In line 15, the refactoring sequences are sorted in descending order by
their fitness (number of anti-patterns corrected). The main loop starts in Line 16 until the

65

stopping criterion is met. For this case study, we use number of evaluations.

Algorithm 6: Genetic Algorithm implementation for scheduling refactorings
Input : System to refactor (SYS)
Output: An optimal sequence of refactoring operations (SR)

1 Steps GA(SYS)
2 AM=code-design model generation (SYS)
3 A = Detect Anti-patterns(AM)
4 R = Generate set of refactoring candidates(AM,A)
5 GC = Build Graph of conflicts between refactorings and anti-patterns (AM,LR)
6 SR = Genetic Algorithm for refactoring(GC , AM)
7 Procedure Genetic Algorithm for refactoring(GC , AM):
8 nPop = populationSize
9 P = GenerateInitialPopulation(AM,GC)

/* Evaluation of P */
10 for all s ∈ P do
11 AM ′ = AM.clone()
12 apply_refactorings(AM ′, s)
13 s.Ap = detect_antipatterns(AM ′)
14 end for

/* the sequences are sorted in ascendent order according to Ap */
15 P .sort()
16 while not StoppingCriterion do

/* add the best two individuals of the previous population in O population */
17 O.add(P0)
18 O.add(P1)

/* Reproductive cycle */
19 for 0 to nPop/2− 1 do

/* parents is a list of refactoring sequences */
20 parents = new List of size 2
21 parents0 = selection_operator(P)
22 parents1 = selection_operator(P)
23 offspring = V ariation_Operators(parents,GC)

/* We generate two offsprings */
24 AM ′ = AM.clone()
25 apply_refactorings(AM ′, offspring0])
26 offspring0.Ap = detect_antipatterns(AM ′)
27 AM ′ = AM.clone()
28 apply_refactorings(AM ′, offspring1)
29 offspring1.Ap = detect_antipatterns(AM ′)
30 O.add(offspring)
31 end for
32 P=O
33 O=null
34 P .sort()
35 end while
36 best_solution = P0
37 return best_solution
38 end

Parameters of GA

We use the same parameters than those used in Section 4.4.3.

5.4.6 LIU conflict-aware scheduling of refactorings

Liu et al. [82, 83] proposed different heuristics to solve the refactoring scheduling problem.
From these approaches, we select the former one [82], as it is the one that could work with

66

the anti-patterns studied in this chapter. On the other hand, the approach proposed in [83]
assumes that the refactoring of certain type of anti-patterns can lead to the resolution of
another types (e.g., removing code duplications can affect long method). Hence, they leverage
this property to remove redundant edges in the graph of conflicts using topological order.
However, the type of anti-patterns that we studied and their corresponding refactorings are
independent (e.g., it is not appropriate to apply inline class refactoring from a data class to
a Blob class; or collapse hierarchy and inline class cannot be applied at the same time to the
same class).

In the following paragraphs we explain the steps that we took to adapt the conflict-aware
scheduling of refactorings [82] (LIU for short) to our framework, to compare it with RePOR.

LIU uses the QMOOD [40] to assess the effect of applying a refactoring on a software system.
Because QMOOD combines weighted design metrics (e.g., design size, hierarchies, polymor-
phism, etc.) to measure quality attributes like reusability, understandability, flexibility, etc.
The values obtained for each quality attribute are only useful when compared to the values
obtained from systems of the same domain used by the industry. Hence, in the evaluation of
LIU [82] they refactored an in-house-developed-modeling tool, and to calibrate the weights
of design metrics, they take as an upper-bound the metrics values obtained from a similar
open-source system (BPEL from Eclipse foundation). However, in this dissertation we use
the occurrence of anti-patterns as proxy for design quality. We believe that the occurrences
of anti-patterns is a more appropriate way to asses the quality of a software system, as it
does not require to find a good-quality representative system to compare with. Our anti-
pattern detection framework relies on DECOR which uses relative threshold values to asses
the quality of each class in the system, which makes it more flexible and easier to adapt for
an automated approach as it does not require a calibration step.

The steps of our implementation of LIU are summarized in Algorithm 7. The algorithm starts
after generating the list of refactoring candidates and building the graph of conflicts (Lines
2-5). In line 9 we start applying all uninjurious refactorings, i.e., refactorings that do not
prevent the application of other refactorings. More formally, i is an uninjurious refactoring
iff there is not an edge e from vi to vj where {vi, vj ∈ E} , E ∈ GC

If there are no more refactorings left in GC, the algorithm ends (Line 13). Otherwise, we
iterate over all injurious refactorings and perform the following steps.

Compute synthetical effect. It consists of computing the effect of applying a refactoring
i in the system, i.e., the increment/decrement of anti-patterns occurrences after applying i.
We denoted the synthetical effect of applying refactoring i as SynQi.

Compute potential effect. The application of a refactoring may disable other refactorings

67

Algorithm 7: LIU conflict-aware scheduling of refactorings
Input : System to refactor (SYS)
Output: An optimal sequence of refactoring operations (SR)

1 Steps LIU(SYS)
2 AM=code-design model generation (SYS)
3 A = Detect Anti-patterns(AM)
4 R = Generate set of refactoring candidates(AM,A)
5 GC = Build Graph of conflicts between refactorings(AM,LR)

/* GC = (V,E) */
6 SR = Find sequence of refactorings(GC , AM)
7 Procedure Find sequence of refactorings(GC , AM):
8 SR = ∅

/* first applying all uninjurious refactorings */
9 for each vi|adj(vi) = 0 do

10 Remove vi and its edges from GC
11 SR.add(vi)
12 end for
13 if |GC | == 0 then
14 return SR

/* End algorithm */
15 end if

/* first applying all injurious refactorings */
16 for each vi|adj(vi) 6= 0 do
17 Compute synthetical effect (SynQi)
18 Compute potential effect (PQi)
19 Selection and application
20 Update potential effect
21 end for
22 return SR

23 end

(negative effect), or reduce the possibility of conflicts (positive effect) for those refactorings
that are adjacent to vi. Note that for LIU, there is an edge (asymmetrical conflict) between
v, u iff u can be applied before, but not after v. In our motivating example, r2 presents an
asymmetrical conflict with r1 according to LIU. We denoted the potential effect of applying
refactoring i as PQi.

Selection and application. Select a vertex vi from GC that has the greatest potential
effect (PQ) and add it to SR.

Update potential effect. Once refactoring i is applied, we remove the vertex from GC and
update the potential effect of vertices adjacents to vi (adj(vi)).

5.5 Results

In this section, we answer our two research questions that aim to evaluate RePOR.

5.5.1 (RQ1) To what extent can RePOR remove anti-patterns?

We present in Table 5.6 the Design improvement (DI) in general and for different anti-pattern
types, for each studied system. The results are the median of the 30 independent executions.

68

Table 5.6 Design Improvement (%) in general and for different anti-pattern types.

Metaheuristic DI DIBL DILC DILP DISC DISG
Ant

ACO 57.45 68.42 22.5 74.29 66.67 100
GA 58.16 68.42 22.5 74.29 66.67 100
LIU 58.87 54.39 22.5 100 66.67 100
RePOR 60.28 57.89 22.5 100 66.67 100

ArgoUML
ACO 75.93 51.15 100 83.63 100 100
GA 76.59 51.15 100 84.7 100 100
LIU 81.40 50.38 100 92.88 100 100
RePOR 81.62 38.93 100 98.58 100 100

Gantt Project
ACO 60 17.02 100 83.82 70 100
GA 60.77 14.89 100 85.29 80 100
LIU 63.85 14.89 100 92.65 60 100
RePOR 66.15 8.51 75 100 100 100

JfreeChart
ACO 75.4 39.02 100 89.52 100 100
GA 75.4 39.02 100 90.32 100 100
LIU 72.22 31.71 100 88.71 100 100
RePOR 75.4 24.39 100 100 100 100

Xerces
ACO 56.59 14.29 100 65.55 100 100
GA 57.56 14.29 100 67.23 100 100
LIU 64.39 16.07 100 78.99 50 100
RePOR 73.17 5.36 100 98.32 100 100

With a median DI of 73%, overall, the design improvement (first column) of the solutions
generated by RePOR is higher in comparison with the improvements achieved by the other
three refactoring approaches. The DI of LIU is close to the one obtained by RePOR except
in one system, JfreeChart, where LIU achieved the lowest DI. Concerning ACO and GA, the
DI achieved is very similar.

With respect to the type of anti-patterns, RePOR have some difficulty to remove Blob anti-
patterns compared to the other metaheuristics (we discuss further in Section 5.6), with one
exception, ArgoUML, where it improves more than LIU. For Lazy Class, the results achieved
are the same except for Gantt, where it removes less instances than the others. For Long
Parameter List, RePOR reports the best results in all the systems studied. For Spaghetti
code, RePOR overcomes the rest of the approaches in Gantt, and obtains equivalent results
for the rest of the systems studied. Finally, for Speculative Generality the improvement
obtained for all the algorithms is the same.

Table 5.7 presents the Mann-Whitney test results and Cliff’s δ (ES) effect size obtained
when comparing the number of remaining anti-patterns of the systems after being refactored
by RePOR and the other refactoring approaches. We observe that all the differences are
statistically significant with a large effect size, except for JFreeChart where the difference
between ACO and RePOR is small, and the pair GA-RePOR where the effect size is negli-

69

gible. Therefore we reject H01 for the rest of the systems.

Table 5.7 Pair-wise Mann-Whitney U Test test for design improvement.
Pair p− value Cliff’s δ ES Magnitude

Ant
ACO-RePOR 2.561349e-12 1 Large
GA-RePOR 1.431438e-11 1 Large
LIU-RePOR 1.685298e-14 1 Large

ArgoUML
ACO-RePOR 1.176641e-12 1 Large
GA-RePOR 1.143381e-12 1 Large
LIU-RePOR 1.685298e-14 1 Large

Gantt Project
ACO-RePOR 1.036681e-12 1 Large
GA-RePOR 1.086586e-12 1 Large
LIU-RePOR 1.685298e-14 1 Large

JfreeChart
ACO-RePOR 0.06868602 0.2333333 Small
GA-RePOR 0.2771456 -0.1333333 Negligible
LIU-RePOR 1.685298e-14 1 Large

Xerces
ACO-RePOR 1.0618e-12 1 Large
GA-RePOR 9.946555e-13 1 Large
LIU-RePOR 1.685298e-14 1 Large

�

�

�

�

We reject the null hypothesis H01 for Ant, ArgoUML, Gantt, JfreeChart, and Xerces. In
these five systems, the number of remaining anti-patterns after refactoring using RePOR is
significantly lower than the number of anti-patterns remaining in the systems after refac-
toring using the other refactoring approaches (i.e., ACO, GA, and LIU). With respect to
the magnitude of Cliff’s δ, the difference is large for all the systems, except the pairs ACO-
RePOR and GA-RePOR in JFreeChart, where it is small and negligible, respectively. Over-
all, our results suggest that for the set of anti-patterns studied and the systems analyzed,
RePOR can correct more anti-patterns, than ACO, GA, and LIU.

5.5.2 (RQ2) How does the performance of RePOR compare to those of meta-
heuristics ACO, GA, and the conflict-aware approach LIU from the liter-
ature, for the correction of anti-patterns?

We present in Table 5.8 the execution time (ET) and the refactoring effort (EF) incurred
for each refactoring scheme. ET is given in seconds, while EF represents the number of
refactorings applied. The results are the median of 30 independent runs.

We can observe that RePOR performs better than the other algorithms in terms of execution
time and effort, with a remarkable difference, while removing more anti-patterns and using

70

Table 5.8 Median performance metrics for each system, metaheuristic studied.
Metaheuristic Execution Time (ET) Refactoring Effort (EF)

Ant
ACO 11505.73 1686
GA 11558.97 1676
LIU 260.45 1641
RePOR 82.05 827

ArgoUML
ACO 5617.51 1119
GA 5664.39 1123
LIU 148.45 1166
RePOR 72.88 438

Gantt Project
ACO 5924.93 1069
GA 5975.71 1067
LIU 652.45 894
RePOR 133.45 119

JfreeChart
ACO 11321.81 1748
GA 11369.82 1748
LIU 877.74 1747
RePOR 133.30 297

Xerces
ACO 5781.67 886
GA 5831.93 887
LIU 389.43 909
RePOR 63.07 178

less resources. In terms of execution time; it takes between one minute and less than three
minutes to generate a sequence for a complete system, while the second best scheme (LIU)
takes a median of six and half minutes. This is equivalent to a median reduction of 80% of
execution compared to the baseline approach.

With respect to refactoring effort, the number of refactorings scheduled are considerably less
than the other approaches. The median refactoring’s effort reduction is 80% less time than
the second best scheme (LIU). We suggest that the less an automated approach deviates from
the initial design of a system, the more chances to be accepted by developers and maintainers.
Our rational derives from the following conjecture: developers are reluctant to accept large
code transformations in favor of potential design quality improvement.

The performance of GA and ACO is poor compared to RePOR, despite using the same solu-
tion representation and the conflict graph (to discard invalid refactorings). We attribute this
poor performance to their incapability to discard equivalent sequences (i.e., permutations of
refactorings that lead to the same design). Despite the fact that LIU has integrated a mech-
anism to evaluate the potential effect of applying/removing a refactoring from a sequence,
it cannot avoid scheduling uninjurious refactorings that do not improve the design quality,
incurring additional costs in effort and time.

Concerning RePOR, the overhead occurs when generating a refactoring sequence from a

71

permutation, in case that it contains a large number of elements. To deal with this issue,
RePOR only a consider subset of refactoring operations from the permutation until it reaches
the desiredimpact, i.e., the correction of an anti-pattern instance without introducing a new
one (cf. Algorithm 4). However, we do not expect to find many cases where the number
of elements in a connected component is to large to be exhaustively explored. In Table 5.9
we provide some statistics about the size of the connected components in GD generated by
RePOR from the studied systems.

Table 5.9 Statistics of the connected components (CCAP) in GD from the studied systems

System Median size Size>1 Total CCAP
Ant 1 46 99
ArgoUML 1 46 424
Gantt Project 1 25 108
Jfreechart 1 30 106
Xerces 1 36 173

We can observe that the median size of the connected components is one, and the number of
connected components with size greater than one goes from 11% to 47% of total number of
connected components in the worse scenario.

ACO and GA are algorithms for which it is not possible to predict when an optimal solution
will be found. In general, the performance of a metaheuristic can be affected by the correct
selection of its parameters. The configurable settings of the search-based techniques used
in this chapter correspond to stopping criterion, population size, and the probability of the
variation operators. We use the number of evaluations as the stopping criteria. As the
maximum number of evaluations increase, we expect the algorithm to obtain better quality
results. The increase in quality is usually very fast when the maximum number of evaluation
is low. That is, the slope of the curve quality versus maximum number of evaluations is
high at the very beginning of the search. But this slope tends to decrease as the search
progresses. Our criterion to decide on the maximum number of evaluations is to select a
value for which this slope is low enough. In our case low enough is when we observe that no
more anti-patterns are removed after n number of evaluations, where n is the value that we
are testing. We empirically tried different values in the range of 100 to 1500 and found 1000
to be the best value. However, that does not imply that the best solution is to be found at
the end of the 1000 iterations, but could happen before. In addition, computing the average
of design improvement with respect to time could help to determine if the evolution trend of
the solutions could reach its inflexion point, or the algorithm was stopped prematurely.

To study the evolution of the quality of the solutions obtained by each algorithm every time
the current best solution is improved, we compute the average quality of each solution with

72

respect to time, and present the results in Figure 5.1. The quality is expressed as DI, and
the time is normalized using the min-max normalization, that is the minimum time value
is mapped to 0 and the maximum value to 1. Given that RePOR and LIU produce only
one solution in the entire process (instead of producing several solutions and evolving them),
there is only one point for these approaches. The interpretation for a point p (t,v) is: from t

and until the next sample, the average quality of the metaheuristic is v, where t represents
time and v is the DI. We can observe that RePOR produces high-quality solutions in a small
fraction of time, in comparison to the other approaches. There are only two cases where
differences are small: in ArgoUML, LIU is very close to the results achieved by RePOR in
terms of quality with a difference of 0.2%, and incurring only 1.75% additional time, while
the difference with the best solutions of ACO and GA is not less than 5%. In JfreeChart,
where GA approaches the best solution found by RePOR with a difference of 0.02% in DI,
but with a remarkable difference of 99.70% of additional time. This is the only case where
GA and ACO are clearly better than LIU. For the rest of the systems, as it is shown in
Figure 5.1, both metaheuristics reached their inflexion point far below the optimal solutions
found by RePOR and LIU.

With respect to the type of refactorings applied, we present in Table 5.10 the number of
refactorings applied by type. We can observe that the number of refactorings applied by
RePOR are almost the same, except for move method. That explains the reduction in effort
required by RePOR compared to the other metaheuristics. It also explains why the results
obtained for the removal of Blob are not so good, since for this type of anti-pattern requires
the application of many refactorings to be corrected. Still, this should not be considered as a
flaw of our approach, since the main objective is to correct the largest number of anti-patterns
without prioritizing the correction of a particular type of anti-pattern, over the others anti-
patterns. In this regard, RePOR succeeds well in improving the design quality of the systems
studied, in a reasonable amount of time.

Finally, to assess the statistical significance of the results obtained, we compare performance
metrics between RePOR and each metaheuristic using the same procedure as RQ1. Ta-
ble 5.11 presents the pair-wise statistical tests for each metaheuristic. We observe that all
the differences are statistically significant with a large effect size. Therefore we reject H02 for
the five studied systems.

73

Ant

0.
5

0.
7

0.
9

Argo Gantt

0.0 0.2 0.4 0.6 0.8 1.0JfreeChart

0.
5

0.
7

0.
9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Xerces

0.0 0.2 0.4 0.6 0.8 1.0

ACO
GA
LIU
RePOR

Normalized time

Q
ua

lit
y

Im
pr

ov
em

en
t (

D
I)

Figure 5.1 Quality evolution of the refactoring solutions with respect to time.

74

Table 5.10 Median count of refactorings applied for each system, refactoring scheme, by type.
Metaheuristic CH IC IPO MM RMWO

Ant
ACO 6 9 256 1643 3
GA 6 9 27 1629 3
LIU 6 9 35 1589 2
RePOR 6 9 35 774 3

ArgoUML
ACO 17 24 246 829.5 1
GA 18 23 249 828.5 1
LIU 18 23 281 843 1
RePOR 17 25 280 115 1

Gantt Project
ACO 6 4 59 996 3
GA 6 4 60 994 3
LIU 6 4 68 812 4
RePOR 6 4 68 37 5

JfreeChart
ACO 1 21 56 1669 1
GA 1 21 56 1669 1
LIU 1 21 62 1662 1
RePOR 1 21 62 212 1

Xerces
ACO 3 25 97.5 758.5 2
GA 3 25 99 759 1.5
LIU 3 25 119 761 1
RePOR 3 25 119 29 2

�

�

�

�

We reject the null hypothesis H02 and H03, for Ant, ArgoUML, Gantt, JfreeChart, and
Xerces. In these five systems, the execution time and the effort incurred by RePOR are
significantly lower than those incurred by the other refactoring approaches. With respect to
the magnitude of Cliff’s δ, the difference is large for all the systems analyzed. Overall, our
results suggest that for the set of anti-patterns studied and the systems analyzed, RePOR can
correct more anti-patterns, using less time, and requiring less effort (in terms of refactorings
applied) than ACO, GA, and LIU.

5.6 Discussion

In this section we discuss the results obtained by RePOR and their relevance for software
maintainers and toolsmiths interested in improving the design quality of a software system
through refactoring.

In Section 5.5 we have shown that RePOR is able to correct more anti-patterns using con-
siderably less resources in terms of time and effort than state-of-art refactoring approaches.
However, we observed that the number of instances of Blob anti-pattern removed by RePOR
was lower than the number of Blobs removed by the other approaches. This could be ex-
plained by the large amount of refactorings that are required to remove a Blob anti-pattern,

75

Table 5.11 Pair-wise Mann-Whitney U Test test for performance metrics.
Metric Pair p− value Cliff’s δ ES Magnitude

Ant
ET ACO-RePOR 1.691123e-17 1 Large
EF ACO-RePOR 1.133109e-12 1 Large
ET GA-RePOR 1.691123e-17 1 Large
EF GA-RePOR 1.197023e-12 1 Large
ET LIU-RePOR 1.691123e-17 1 Large
EF LIU-RePOR 1.685298e-14 1 Large

ArgoUML
ET ACO-RePOR 1.691123e-17 1 Large
EF ACO-RePOR 1.191166e-12 1 Large
ET GA-RePOR 1.691123e-17 1 Large
EF GA-RePOR 1.202906e-12 1 Large
ET LIU-RePOR 1.691123e-17 1 Large
EF LIU-RePOR 1.685298e-14 1 Large

Gantt Project
ET ACO-RePOR 1.691123e-17 1 Large
EF ACO-RePOR 9.750474e-13 1 Large
ET GA-RePOR 3.017967e-11 1 Large
EF GA-RePOR 1.13497e-12 1 Large
ET LIU-RePOR 1.691123e-17 1 Large
EF LIU-RePOR 1.685298e-14 1 Large

JfreeChart
ET ACO-RePOR 1.691123e-17 1 Large
EF ACO-RePOR 1.038395e-12 1 Large
ET GA-RePOR 1.691123e-17 1 Large
EF GA-RePOR 1.124768e-12 1 Large
ET LIU-RePOR 1.691123e-17 1 Large
EF LIU-RePOR 1.685298e-14 1 Large

Xerces
ET ACO-RePOR 1.691123e-17 1 Large
EF ACO-RePOR 1.144319e-12 1 Large
ET GA-RePOR 1.691123e-17 1 Large
EF GA-RePOR 1.175678e-12 1 Large
ET LIU-RePOR 1.691123e-17 1 Large
EF LIU-RePOR 1.685298e-14 1 Large

76

in comparison to other types of anti-patterns. Another interesting observation is the fact that
Long-parameter List and Lazy class anti-patterns show higher improvement with RePOR.
Therefore, there seems to be a trade off between the refactorings that can be scheduled, as
it is not possible to improve all types of anti-patterns to the same extent. What we present
in this paper is an alternative refactoring approach, which proves to be more efficient than
existing refactoring approaches in terms of design improvement, execution time, and effort.
We achieved this result by clustering refactorings by the class that they affect in a connected
component subgraph (ccap), and exhaustively searching (when possible) the best order for
the refactorings for each ccap, as they are likely to lead to a different software design. In
addition, as each ccap may contain conflicted refactorings that cannot be scheduled simul-
taneously, these refactoring operations are removed from the search space too, reducing the
length of the sequences to be evaluated. Finally, for the set of refactorings in a ccap where
the size is too large to explore all permutations exhaustively, we implement in our approach
a mechanism to stop the addition of refactorings if we found that the desired effect (i.e., the
desired improvement in quality) is achieved, or just simply when the permutation does not
lead to any improvement (i.e., does not correct any anti-pattern). In comparison, LIU ap-
proach runs until there is no more refactorings left in the graph, so it assumes that all the
refactorings that are not conflicted have to be scheduled. An assumption that may lead to
the inclusion of unnecessary refactorings in the final sequence. With respect to ACO and GA,
they start with random initial solutions that are iteratively transformed until the stopping
criteria is achieved. While this proved to be useful for removing Blob anti-patterns, the usage
of resources in terms of time and effort seems to be prohibitive for a coding session or when
working interactively with a developer, and may be more suitable for refactoring sessions
running after-hours as a batch process. Another disadvantage of ACO and GA is that they
have to be calibrated in order to perform reasonably well, with the plethora of parameters
involved for each algorithm as we show in Section 5.4. One final remark, the refactoring
sequences generated by all the approaches studied in this chapter, do not prioritize any code
entities that a developer might be interested as we did in Chapter 4. It is possible that
developers are interested in refactoring certain specific packages or classes for which they
have the ownership; or simply that they just prefer avoiding touching legacy code or critical
components. To provide developers with a tool that could be used during daily coding tasks,
we integrated RePOR as an Eclipse plug-in [158]. After analyzing a software system (or a
subset of classes), our plug-in presents information about the anti-patterns detected, and
generates a refactoring sequence from which developers can select the refactorings that they
consider appropriate.

77

5.7 Threats to validity

We now discuss the threats to validity of our study following common guidelines for empirical
studies [143].

Construct validity threats concern the relation between theory and observation. Our case
study assumes that each anti-pattern is of equal importance, when in reality, this may not be
the case. Concerning the scheduling of refactorings, we assume that the potential refactoring
operations that can be applied in a software system are determined before the refactoring
process begins. This is a big assumption, as new refactoring operations might be found as a
consequence of changes in the code, e.g., the application of previous refactorings. However,
the search for new refactoring opportunities after applying each refactoring in a sequence is a
costly operation. Therefore, most (if not all) the works on automatic refactoring assume that
there is a list of refactoring opportunities at the beginning of the search and the optimization
algorithm simply selects which of them will be applied and their order until the end of the
list/starting of a new refactoring session [55].

Threats to internal validity concern our selection of subject systems, tools, and analysis
method. With respect to anti-pattern’s detection, DECOR is known to be accurate [52],
it is not possible to guarantee that we detect all anti-patterns or that what we detect as
anti-patterns are indeed true anti-pattern instances. Other anti-pattern detection techniques
and tools should be used to confirm our findings.

Conclusion validity threats concern the relation between the treatment and the outcome. We
paid attention not to violate assumptions of the constructed statistical models. In partic-
ular, we used non-parametric tests that do not require any assumption on the underlying
probability distribution of data.

Reliability validity threats concern the possibility of replicating this study. Every result
obtained through empirical studies is threatened by potential bias from data sets [159]. To
mitigate these threats we tested our hypotheses over five open-source systems with different
size, purpose and years of development. In addition to this, we attempt to provide all the
necessary details required to replicate our study. The source code repositories of Apache
Ant, ArgoUML, JfreeChart, Gantt and Xerces are publicly available, and have been studied
in previous studies related to anti-patterns and code smells. In addition, we made the tool
and the data generated publicly-available through our on-line replication web site [158].

Threats to external validity concern the possibility to generalize our results. Our study is
focused on five open source software systems having different sizes and belonging to different
domains. Nevertheless, further validation on a larger set of software systems is desirable,

78

considering systems from different domains, as well as several systems from the same domain.
In this study, we used a particular yet representative subset of anti-patterns as proxy for
software design quality. Future works using different type of anti-patterns are desirable.

5.8 Chapter Summary

In this chapter, we discussed the importance of efficiently scheduling refactorings operations,
to reduce refactoring effort. We highlighted some of the major problems of existing search-
based approaches. For example, the slow convergence of solutions from EAs, which means
that they require too many evaluations to find a solution, that translates in longer execution
times. We set out to address the following question:

�
�

�
�

Central Question: Is it possible to improve automated refactoring by proposing an effi-
cient scheduling?

To answer this question, we proposed RePOR, a novel approach for automatically scheduling
refactoring operations for correcting anti-patterns in software systems. To evaluate RePOR,
we conducted a case study with five open-source software systems and compared the perfor-
mance of RePOR with the performance of two well-known metaheuristics (GA and ACO) and
one conflicting-aware refactoring approach (LIU). Results showed that RePOR can correct
more anti-patterns than the aforementioned techniques in just a fraction of the time, and
with less effort. Moreover, we integrate RePOR as an Eclipse plug-in to support developers
with a fully automated-tool during their development work.

79

CHAPTER 6 USING TESTING EFFORT FOR IMPROVING
AUTOMATED REFACTORING

6.1 Introduction

In previous chapters, we formulated the problem of refactoring as a single objective search
problem, using the occurrences of anti-patterns to guide the search process. However, one may
be interested in adding new objective functions to improve different design quality aspects
at the same time. For example, one could be interested in minimizing the dependency
between classes, while preventing the excessive accumulation of responsibilities in a single
class. To combine more than one objective, (cf. Section 3.1.2) the SBSE research community
has formulated the problem of refactoring anti-patterns as a multiobjective combinatorial
optimization problem [45, 69, 24, 26], and used EMO to solve it. They have interspersed the
correction of anti-patterns with other relevant objectives, like the use of developer’s history,
the preservation of domain semantics between classes and methods, etc. However, they have
ignored another important aspect of the software development process, which is the testing
effort.

Testing is an activity that aims to ensure that a system behaves according to its design
specifications on a finite, but representative, set of test cases, taken from the infinite execu-
tion domain [160]. Researchers have investigated different ways to reduce testing effort and
increase its effectiveness at different levels, e.g., unit testing [96], integration testing [161],
etc.; as well as for different software artifacts like documentation [162], and source code [96].
Refactoring operations are among the factors that can impact the testing effort of a system.
In fact, move method or extract class refactorings applied to redistribute the responsibilities
of a large class, either to its collaborators or to new entities, can allow units of code to be
tested separately; reducing the number of scenarios to test. Moreover, writing test cases for
the refactored class is simplified as its related components can be easily replaced with mock
objects during testing.

However, to the best of our knowledge, despite its importance, testing has been mostly
overlooked so far, during automated refactoring. We hypothesize that if we consider the
reduction of testing effort (as an additional objective) during automated refactoring, we can
obtain refactoring solutions that not only improve the design quality of the system, in terms
of anti-patterns correction, but also reduce the testing effort at the same time.

To test our hypothesis, we introduce Testing-Aware ReFactoring approach (TARF), a novel

80

Multiobjective optimization (MO) approach for the problem of refactoring that minimizes
the testing effort while improving the design quality. We perform a case study to assess the
effectiveness of TARF using four different metaheuristics (one single and three multiobjective)
and a benchmark of four open-source systems.

6.2 Improving automated refactoring of anti-patterns by leveraging testing ef-
fort estimation

In this chapter, we aim to improve the refactorings solutions found by an automated refac-
toring approach by leveraging testing effort estimation in a way that we can both improve
design quality, and reduce testing effort of the software systems refactored.

Thus far, automated refactoring approaches have ignored the impact of their solutions on
testing effort, which may contribute to developer’s reluctance to adopt them at full scale in
their regular coding tasks.

We, therefore, set out to address the following question:

�
�

�
�

Central Question: Is it possible to improve automated refactoring by considering testing
effort?

To guide the search of refactoring opportunities, we assess both design improvement (mea-
sured as the number of anti-patterns’ occurrences) and testing effort of the refactored design
for each refactoring sequence found by an EMO search algorithm.

6.2.1 Testing effort measurement

We refer to testing effort as the number of test cases required for each class in a software
system, according to the Minimal Data members Usage Matrix (MaDUM) testing strat-
egy [100]. MaDUM as well as other object-oriented (OO) testing strategies, e.g., state-based
condition [163], and the pre-and-post conditions testing [101] have been proposed to over-
come the limitations of traditional techniques, e.g., white-box and black-box testing, when
testing OO systems. Indeed, as pointed out by many authors [100, 163], the traditional
testing strategies used in the context of procedural programming are insufficient to test OO
programs because they are conceived to test functions as stand-alone code units, raising the
possibility of missing state-based errors occurring during intra-method interactions. Among
the testing strategies that consider the OO paradigm, we choose MaDUM because it does not

81

require any kind of software artifact apart from the source code. Hence, a simple static anal-
ysis of the source code is enough to estimate the number of test cases required to find code
deviations. Then, that estimation can be leveraged by an automated approach to guide the
refactoring process towards a design that minimizes the unit testing effort. Because testing
all possible interactions between methods and attributes within a class is expensive, if not
impossible, OO testing strategies seek to reduce the number of sequences of methods to test.
MaDUM testing uses a divide to conquer strategy to perform unit testing: the class is divided
in data slices and its correctness is evaluated in terms of the correctness of all its slices tested
separately. A data slice is the set of methods that access to a particular attribute (field) in a
class. The identification of the data slices is based on the Enhanced Call-Graph (ECG) and
the MaDUM. The ECG represents the type of usages among the members of a class and it
is defined as: ECG(C) = (M(C), F (C), Emf,Emm), where M(C) is the set of methods of
C, F (C) is the set of fields of C. Emf = (mi, fj) indicates that method i accesses field j,
and Emm(mi,mj) that method i invokes method j.
MaDUM is an nf × nm matrix where nf and nm are the numbers of fields and methods in
the class. It is built using the ECG of the class. MaDUM defines four categories to classify
the methods, that are: class constructors (c), transformers (t), i.e., methods that modify the
state of a field, reporters (r), i.e., methods that return the value of an attribute, and others
(o), i.e., methods that do not fall in the previous categories. Once the MaDUM of a class has
been built, the order for testing that class is the following: first reporters are tested to ensure
that they do not alter the state of the attribute they are reporting on. Constructors are then
tested to ensure that attributes are correctly initialized, and in the right order. The testing
of transformers is performed by generating for each slice all permutations of transformers in
that slice for each constructor context. For example, let c be the set of constructors and t
the set of transformers in a given slice, it is necessary to produce |c| × |t|! test cases, where
the function |x| denotes the cardinality of the set x. Others (o) are tested using traditional
black or white-box testing. Note that a method mj can access a field fi directly or indirectly
through another method mk invoked by mj. Although, in the last scenario, if mj accesses fi
only through mk, and mk has been already tested in the fi slice, there is no need to retest
mj in the slice fi. The total number of test cases required to test a given class is computed
as follows:

te(Ci) = |c|+ |r|+ |o|+
n∑
i=1
|ci| ∗ |ti|! (6.1)

Where |x| is the number of methods of type x in the class, n the number of slices in the class,
and |xi| the number of methods of type x in the slice i. When a class in a system presents a
high number of transformers in a slice, i.e., methods that modify the state of an attribute,

82

the probability of having points of failures increases, and consequently a higher number of
test cases is required in order to thoroughly test the class. Hence to reduce testing effort and
the risk of failures, due to state inconsistencies, the number of transformers within a slice
should be kept as low as possible. Considering testing effort in automated-refactoring can
alleviate the problem by prioritizing refactorings that reduce the number of transformers, and
therefore the number of test cases required. For example, for each slice we need a number
of test cases equal to the number of permutations of slice transformers multiplied by each
constructor context. Hence, if we apply move method refactoring to move one or more of
these transformers, from a large class to any other class in the system , which has a low
number of transformers, the number of test cases required for the large class will decrease
in a significant proportion, while the number of test cases for the small class will slightly
increase, making the sum of test cases required for both classes less than before refactoring.
Nevertheless, certain refactorings like the introduction of parameter object class increase the
number of test cases (one for each parameter extracted from the source class to the new class
object, plus one for the new constructor).

6.3 Testing-Aware Automated Refactoring

This section presents the foundations of our proposed approach TARF that aims to improve
the design quality of OO systems, while minimizing the effort required to test the system.

Algorithm 8 summarizes the main steps of TARF. We describe each step in more details in
the following paragraphs.

Generation of Abstract Model. This step consists in generating a graph representation
of the system under maintenance that contains all the components (classes, methods, and
attributes) of the system and the relationships between these components. This graph will
be used to detect anti-patterns, compute the testing effort, and apply different refactoring
sequences until we find an optimal solution.
Computation of MaDUM. At this step, we compute for each individual class, the cor-
responding ECG, and MaDUM. Once the MaDUM is built, we can compute the number of
test cases required per class, and then by adding these numbers for all classes in the system,
we obtain the overall testing effort for the system.
Detection of anti-patterns. This step consists in detecting anti-patterns in the system.
We use the count of anti-patterns to assess the design quality of the system.
Generation of refactoring opportunities. This step consists in selecting refactoring op-
erations that can remove anti-patterns detected in the previous step.
Search-based refactoring using EMO. At this step, we apply search-based techniques to

83

Algorithm 8: TARF Approach
Input : Software system to refactor (SW)
Output: Optimal refactoring sequence(s)

1 Pseudocode TARF(SW)
2 AM=Generation of Abstract Model
3 MAD=Computation of the MaDUM matrix
4 AP=Detection of Anti-patterns
5 RS=Generation of refactoring opportunities
6 Search-based refactoring(AM, MAD, RS)
7 Procedure Search-based refactoring(AM,MAD,RS)
8 AM ′ = AM
9 M = set_of(MaDUM)

10 S = sequence_of(RS)
11 P0 = GenerateInitialPopulation(S)
12 A = ∅
13 for all Si ∈ P0 do
14 apply_refactorings(AM ′, Si)
15 compute_Quality(AM ′)
16 compute_TestingEffort(AM ′,MAD)
17 end for
18 Evaluation(P0)
19 A0 = Update(A0, P0)
20 t = 0
21 while not StoppingCriterion do
22 t = t+ 1
23 Pt = V ariation_Operators(At−1, Pt−1)
24 for all Si ∈ Pt do
25 apply_refactorings(AM ′, Si)
26 compute_Quality(AM ′)
27 compute_TestingEffort(AM ′,MAD)
28 end for
29 Evaluate(Pt)
30 At = Update(At, Pt)
31 end while
32 best_solution = A
33 return best_solution

find the best sequence of refactorings that achieves a maximum reduction of the number of
anti-patterns, while keeping the testing effort as minimum as possible. Since we formulate the
problem as MO, we need to use metaheuristic techniques that can lead to fast results in the
set of non-dominated solutions, i.e., the ones that provide a trade-off between anti-patterns
removal and test cases reduction. A generic template for EMO algorithms is presented from
line 8 to line 34. The algorithm takes as input the abstract model (AM), the set of MaDUMs
for each class (MAD), and the list of candidate refactorings (RS). With this information, it
generates the initial population P0, and updates the set of non-dominated solutions found
in this first sample, A (lines 8-20). After generating the initial population, the main search
loop starts (line 22). Solutions, i.e., refactoring sequences, included in P and A are varied
randomly and a new set of solutions is generated (line 24) and evaluated. The evaluation
of the candidate solutions is performed in three steps: (1) the sequence of refactorings is
applied to a copy of the abstract model (AM’); (2) a map of anti-patterns is generated from
the refactored code and the quality of the system is computed. Next (3) the testing effort
is computed after recomputing the MaDUMs for the modified classes. After the evalua-

84

tion of a set of solutions, solutions that are not non-dominated are retrieved (line 31). The
process ends when the algorithm reaches the stop condition. Examples of stop conditions
that are commonly used include a predetermined execution time, or a predefined maximum
number of evaluations.

6.4 Case Study Design

The goal of this case study is to assess the effectiveness of TARF in correcting anti-patterns
in OO systems, while reducing the effort required to test the system.

The quality focus is the improvement of the design quality of OO systems and the reduction
of testing effort through search-based refactoring. The perspective is that of researchers
interested in developing automated refactoring tools and practitioners interested in improving
the design quality of their software system while controlling for testing effort.

The context consists of four open-source software systems (ArgoUML, Gantt Project, JHot-
Draw, and Mylyn) and four evolutionary metaheuristics one single objective algorithm (i.e.,Ge-
netic Algorithm (GA)) and three MO algorithms (MOCell, NSGA-II, and SPEA2). Table 6.1
presents relevant information about the systems under study. We select these software sys-
tems because (1) they are open-source systems, with different purposes and sizes; and (2)
they have been used in previous studies on anti-patterns and refactorings [52, 24, 72].

Table 6.1 Descriptive statistics of the studied systems.
Name Number of classes Number of anti-patterns Number of initial test cases
ArgoUML 0.34 1,754 456 587,220,340
GantProject 1.10.2 188 38 2,510
JhotDraw 5.4 450 89 10,943
Mylyn 3.4 2,365 183 7,303,813

We instantiate our generic approach TARF using four different metaheuristics that we briefly
describe below.

GA [57, 58]. This is the same implementation that we use in Section 4.4.3 including the
same solution representation, selection and variation operators. The process of selection and
recombination is guided by a combined single objective function obtained by multiplying
Equation (4.1) by Equation (6.2).

STF =
n∑
i=1

te(Ci), (6.2)

where STF is the test effort of the system, te is calculated from Equation (6.1), and n is the
total number of classes. We aim to minimize the value of STF .

85

NSGA-II, SPEA2, and MOCell 1. These are EMO algorithms where each objective function
is evaluated separately, generating typically more than one non-dominated solution. . While
each EMO defines their own selection mechanism, the solution representation as well as the
variation operators remain the same. We choose these for metaheuristics because they are
evolutionary techniques that have been successfully applied to solve combinatorial discrete
problems in several contexts. We decide to compare mono-objective with MO metaheuristics
to prove that a trade-off between design quality and testing effort exists. Otherwise, GA
should perform as good as EMOs in finding an optimal refactoring sequence.

6.4.1 Parameters of the metaheuristics.

We are using four evolutionary metaheuristics in our experiments. As we mentioned before,
they make use of variation operators (selection, mutation and crossover) to move through the
decision space in the search for an optimal solution. To determine the best parameters for our
metaheuristics, we run each algorithm with different configurations 30 times, in a factorial
design in the following way: we test 16 combinations of mutation probability pm = (1,
0.8, 0.5, 0.2), and crossover probability pc = (1, 0.8, 0.5, 0.2), and obtained the best results
with the pair (0.8, 0.8). This is not a surprise as in [69] they found high mutation and
crossover values to be the best trade for algorithm performance. For the specific problem of
automated refactoring, setting the initial size of the refactoring sequence is crucial to find
the best sequence in a reasonable time, especially when we have a huge number of candidate
refactorings, because setting a low value will lead to find poor solutions in terms of anti-
patterns correction. On the contrary, if the initial size is very large, we may obtain the
reverse effect because applying many refactorings not necessarily implies better quality, as
refactorings can improve one aspect of quality while worsen others. Hence, we experiment
running the algorithms with three relative thresholds: 25%, 50%, 75% and 100%, of the total
number of refactoring opportunities, and found that 50% give us the best results in terms
of removal of anti-patterns and reduction of testing effort. The population size is set to 100
individuals as default value.

We implement all the metaheuristics described before using the jMetal Framework [164],
which is a wide-use library for solving optimization problems. Given that we are compar-
ing techniques with different sources of information (population, archive, etc.), we opt for
number of evaluations as the stop criteria, and set it to 2500, which is an accepted value for

1. Note that the version of MOCell used in this dissertation is an asynchronous version of MOCell called
aMOCell4 [66]

86

optimization problems in general.

6.4.2 Dependent and Independent Variables

To assess whether TARF can improve design quality while reducing testing effort, we consider
the following dependent and independent variables:
The independent variables are our four selected metaheuristics, i.e., GA, MOCell, NSGA-II,
and SPEA2.
The dependent variables are the following two metrics used to evaluate the effectiveness of
TARF at improving the design quality of systems while reducing the testing effort.

— Difference of anti-patterns occurrences after refactoring (APR): for each metaheuristic
and each system, we subtract the number of anti-patterns occurrences after refactoring
from the number of anti-patterns occurrences before refactoring . APR is an indication
of the improvement/worsening of the design quality of the system. The larger the
difference, the better is the design quality of the system.

— Difference of required test cases after refactoring (TCR): for each metaheuristic and
each system, we subtract the total number of test cases after refactoring from the total
number of test cases before refactoring. TCR is an indication of the improvement/-
worsening of testing effort of a system. The larger the difference, the less is the effort
required to test the system.

The anti-patterns considered for evaluating TARF are the same used for evaluating RePOR
(cf. Section 5.3).

6.4.3 Research Questions

To better answer the central question of this chapter, we formulate the following research
questions :
(RQ1) To what extent can TARF correct anti-patterns and reduce testing effort?
This research question aims to assess the effectiveness of TARF at improving design quality,
while reducing testing effort.
(RQ2) To what extent is design quality improved after refactoring when consid-
ering testing effort?
While the number of anti-patterns in a system serves as a good estimation of design quality,
there are other quality attributes such as those defined by the QMOOD quality model [40]
that are also relevant for developers. This research question aims to assess the impact that
the application of TARF has on these aforementioned attributes.

87

6.4.4 Analysis Method

In order to measure the performance of the MOmetaheuristics used in this chapter, we need to
consider the quality of their resulting non-dominated set of solutions [165]. We use two quality
indicators for that purpose; the Hypervolume (HV) and Spread (∆). HV provides a measure
that considers the convergence and diversity of the resulting approximation set. Higher
values of the HV metric are desirable. Spread measures the distribution of solutions into a
given front. Lower values close to zero are desirable, as they indicate that the solutions are
uniformly distributed. For further details we refer the reader to the source references [166, 63].

To answer RQ2, we use QMOOD [40] to evaluate the impact of the proposed refactoring
sequences on five quality attributes as we did for ReCon (cf. Sections 2.4, 4.4.5).

We obtain the quality gain of the refactored design (D′) by dividing each quality attribute
value by the corresponding value for the original design (D) as previous work [22].

6.5 Case Study results

In this section we present the results of our case study with respect to the two research
questions of this Chapter.

6.5.1 (RQ1) To what extent can TARF correct anti-patterns and reduce testing
effort?

One main feature of MO metaheuristics is that they do not produce a single solution as
mono-objective techniques, e.g., GA, but a set of solutions. From this set of solutions we are
interested in those that are non-dominated, i.e., the solutions whose objective values cannot
be improved without worsening others. Pareto reference Front (RF) is an approximation of
the true Pareto Front (cf. Section 2.3.4), and similar to other combinatorial optimization
studies [45], we assume that the production of the true Pareto front is not feasible, hence
we use the reference front, created from the optimal values after 30 independent executions.
In Figure 6.1 we present the Pareto reference front for JHotDraw, extracted from the three
MO metaheuristics analyzed. The points in Figure 6.1 represent a compromise between
quality and testing effort. The x−axis represents the normalized values of quality, measured
in terms of number of anti-patterns corrected; y − axis represents the number of required
test cases for that solution. The best solutions are found in the right-bottom corner of the
plot. Hence, the software maintainer is able to choose a solution according to its preferences,
for example if someone is interested mostly in reducing the number of test cases, (s)he can

88

opt for a solution located in the left-bottom of the plot. However, that solution would not
remove as many anti-patterns as the solutions located in the middle or in the extreme right
position in the plot. The advantage of considering testing as another objective function is
that maintainers obtain the possibility to choose among trade multiple solutions.

 5500

 5600

 5700

 5800

 5900

 6000

 6100

 6200

 6300

 6400

 6500

 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

N
um

be
r o

f t
es

t c
as

es

Quality

Pareto reference front

Figure 6.1 The Pareto reference front of JHotDraw.

Note that to compare the three MO with GA, we need to select one solution (bs) in the
Pareto front. One technique often used to determine the best solution in the Pareto Front of
a problem, is selecting the solution that has the minimal distance with a hypothetical ideal
solution using the Euclidean distance. The ideal solution for our approach is the one where
we end with zero anti-patterns (1 according to Equation (4.1)) and the number of test cases
is close to zero. The complete equation is provided in Equation (6.3).

bs =
n

min
i=1

(√
(1−DQ[i])2 + (te[i])2

)
, (6.3)

where n is the number of solutions in the Pareto front returned by the MO metaheuristic.

Once we extract the best solution from the Pareto reference front, we are able to compare it
with the one of the single objective metaheuristic (GA). In Table 6.2 we present the number
of anti-patterns corrected, per anti-pattern, in total, and the resulting number of test cases
after applying the four metaheuristics studied. The values presented in Table 6.2 are median
values for the 30 independent runs we performed for each algorithm. Columns 2 to 6 are
the type of anti-patterns; APR is the difference of the number anti-patterns occurrences
after refactoring; TCR is the difference of the number of required test cases after refactoring,
and ROs is the number of refactoring operations applied. A negative number in a column
indicates the worsening of the metric with respect to the original variable measured, and
“−” (columns 2-6) indicates zero anti-patterns of the column type detected. The best results
of columns APR and TCR are highlighted with dark grey. We observe that in general

89

the three MO metaheuristics reduce more the number of test cases than the single approach.
Among the four EAs implemented, MOCell achieved the best results concerning testing effort
reduction (about 50% median improvement compared to the number of test cases required
for the original system version (before refactoring). Moreover, in two systems (ArgoUML,
JHotdraw) the mono-objective technique did not reduce, but considerably increase the testing
effort. This can be explained due to the large number of long-parameter list classes that this
systems contains. The application of IPO refactoring, add new classes to the design causing
an increment of the number of test cases.

Concerning anti-pattern correction, GA overcomes the MO metaheuristics in ArgoUML,
JHotDraw and Mylyn, the same systems, being the former one the one with highest correction
of anti-patterns, but with the highest increase of test cases at the same time. Gantt project
is championed by MOCell, and in Mylyn the average of the two metrics favor MOCell as
well. The median anti-patterns correction improvement for GA reached about 70% while
for SPEA2, which was the second best EAs technique in this metric, reached 46%. This
result indicates the existence of conflict between testing effort and anti-patterns’ correction.
That correcting anti-patterns without considering testing effort, could negatively impact the
testing effort for the system after refactoring. With respect to the number of refactorings
applied (column ROs), we observe that while longer refactoring sequences seem to reduce
more anti-patterns, at least for the three first studied systems, a pattern to characterize the
behavior of testing effort is less evident. While in ArgoUML and JhotDraw the metaheuristics
with the shortest sequences report the less number of test cases, in Mylyn and Gantt the
trend is inverted.

Table 6.2 Median count of anti-patterns removed, and number of test cases after refactoring.
Metaheuristic BL LC LP SC SG. APR TCR ROs

ArgoUML
GA -1 34 335 1 1 370 -1336 1847

MOCell 0 1 8 0 0 9 140 64
NSGA-II 0 1 9 0 0 10 177 63
SPEA2 0 2 14 0 0 16 218 92

Gantt Project
GA 0 1 12 – 2 15 -55 93

MOCell 4 2 14 – 4 24 535 381
NSGA-II 3 2 9 – 4 18 519 317
SPEA2 3 2 13 – 4 22 499 346

JHotDraw
GA – 1 59 – – 60 -507 454

MOCell – 0 21 – – 21 5321 216
NSGA-II – 1 28 – – 29 5283 350
SPEA2 – 0 30 – – 30 5301 389

Mylyn
GA 1 19 101 – – 121 556 1959

MOCell 1 18 77 – – 96 7266802 2159
NSGA-II 1 17 81 – – 99 7266748 1974
SPEA2 1 19 83 – – 103 7266765 2047

90

�

�

�

�

We conclude that only considering anti-patterns’ correction without taking into account
testing effort can negatively impact the testability of a system after refactoring. That a
multiobjective formulation which includes testing effort as an objective to minimize when
applying automatic refactoring can significantly reduce the number of test cases, while keep-
ing reasonable correction results.

Performance of the three multiobjective metaheuristics. In Table 6.3 we present
the mean and the standard deviation of the quality indicators (HV, Spread) values of the
metaheuristics for each system on 30 independent runs. A special notation appears in the
table: a gray colored background denotes the best (dark gray) and second-best (lighter gray)
performing technique. According to the HV indicator, MOCell has been able to approximate
the Pareto fronts with the highest accuracy, while the second-best is achieved by NSGAII,
except for JHotDraw, where SPEA2 overcomes NSGAII. Concerning the spread indicator,
the best spread is divided between SPEA2 and MOCell, and NSGA-II appears to be the less
effective metaheuristic. To determine the significance of the obtained results, we compute
the Wilcoxon rank-sum test between each pair of metaheuristics. The results are summarized
in Table 6.4. In each cell, a N or a O symbol implies a p-value < 0.05, indicating that the null
hypothesis (the median difference between pairs of observation is zero) is rejected; otherwise,
a – is used. The N denotes that the metaheuristic in the row obtained a better value than
the one in the column; the O indicates the opposite. Hence, the only conclusion we can draw
from these results is that 1) MOCell overcomes SPEA2 and NSGA-II in more than a half of
the systems analyzed in terms of HV, while the performance between NSGA-II and SPEA2
remains unclear. Concerning the spread indicator, we omit the results of the Wilcoxon test
because the results were not statistically significant, thus we cannot draw any conclusion
about the performance of the metaheuristics using this indicator. Note that the aim of this
chapter is not to propose a new multiobjective algorithm to perform automated refactoring,
but reformulate the problem of refactoring to include testing effort as a goal regardless of the
metaheuristic employed.

�

�

�

Although the obtained results point out that MOCell is the most effective technique for the
formulation of automatic refactoring considering quality and testing effort, and among the
metaheuristics studied, further studies with more systems, and more quality indicators are
required to validate this result.

91

Table 6.3 Quality indicators: Mean and standard deviation
SPEA2 MOCell NSGAII

Hypervolume
ArgoUML 4.80e− 015.7e−03 5.04e− 014.8e−03 4.89e− 011.1e−02
Gantt 0.00e+ 000.0e+00 2.30e− 011.6e−01 1.00e− 022.0e−02
JHotDraw 5.37e− 012.3e−02 5.93e− 012.5e−02 5.36e− 013.0e−02
Mylyn 1.49e− 014.6e−02 2.40e− 015.7e−02 2.01e− 013.5e−02

SPREAD
ArgoUML 5.60e− 011.0e−01 5.94e− 016.3e−02 6.12e− 012.2e−02
Gantt 8.48e− 018.1e−02 7.89e− 011.7e−01 8.97e− 018.3e−02
JHotDraw 6.95e− 014.3e−02 6.45e− 015.0e−02 7.23e− 013.7e−02
Mylyn 9.63e− 011.3e−01 9.77e− 011.6e−01 1.09e+ 002.3e−01

Table 6.4 Wilcoxon rank-sum test for HV indicator.
MOCell NSGA-II

ARG GAN JHD MYL ARG GAN JHD MYL
SPEA2 O O O – – – –
MOCell – N N –

(RQ2) To what extent is design quality improved after refactoring when consid-
ering testing effort?

Although we have shown that automated refactoring can improve the quality of the system
and reduce the testing effort, some software maintainers may wonder whether the refactorings
applied will produce a new code that is still readable, or if it will be easy to come back later
and modify it or extend it. Since concepts such as reusability, or understandability in design
quality are quite vague and hard to define, we consider the QMOOD evaluation functions as
examples of how to correctly characterize good design properties. In Figure 6.2 we present the
obtained quality gain values (change quotient) that we computed for each QMOOD quality
attribute (QQA) before and after refactoring for each studied system.

0.00

0.25

0.50

0.75

1.00

ArgoUML Gantt Jhotdraw Mylyn

MOCell NSGA−II SPEA2
Effectiveness

0.00

0.25

0.50

0.75

1.00

ArgoUML Gantt Jhotdraw Mylyn

MOCell NSGA−II SPEA2
Extendibility

0.00

0.25

0.50

0.75

1.00

ArgoUML Gantt Jhotdraw Mylyn

MOCell NSGA−II SPEA2
Flexibility

0.00

0.25

0.50

0.75

1.00

ArgoUML Gantt Jhotdraw Mylyn

MOCell NSGA−II SPEA2
Reusability

0.00

0.25

0.50

0.75

1.00

ArgoUML Gantt Jhotdraw Mylyn

MOCell NSGA−II SPEA2
Understandability

Figure 6.2 The quality gain of the best refactoring solutions on QMOOD quality attributes.

We can observe that the system quality increases across the five QQA in an even manner,
that ranges from 1.15 in effectiveness (Jhotdraw, MOCell) to 0.33 in flexibility (JHotDraw,
NSGA-II).

We suggest that the low value in flexibility compared to effectiveness is in part the result of

92

the weight that each of these two quality function assigns to MOA metric (0.2, 0.5 respec-
tively). According to QMOOD, MOA is the number of user-defined classes, and we observe
in Table 6.2 that MOCell removed less long parameter list anti-patterns than GA. We re-
mind that the suggested refactoring for LP is introduce parameter-object, which creates new
classes to store the long parameter list, hence the increment in the number of user-defined
classes is less in MOCell compared to GA. On the other hand, effectiveness assigns a lower
weight to this metric (0.2), but integrates other desirable metrics related to OO design like
abstraction, encapsulation and inheritance. Finally, understandability, reusability, and ex-
tendibility factors are benefited from the extensive application of move method refactorings,
and reported an increment similar to effectiveness, because Move method is known to impact
metrics like coupling (DCC), cohesion (CAM) and design size (DSC) that serves to calculate
these quality attributes.

�

�

	
We conclude that our approach was successful in improving design quality not only in terms
of anti-patterns correction, but also in terms of quality attributes such as understandability,
reusability, flexibility, effectiveness and extendibility.

6.6 Threats to validity

This section discusses the threats to validity of TARF’s case study following common guide-
lines for empirical studies [143].

Construct validity threats concern the relation between theory and observation. This is mainly
due to possible mistakes in the detection of anti-patterns, in the refactorings applied. We
based the anti-patterns detection on DECOR [52], and despite the high recall and precision
of DECOR, there is no warranty that we detect all the possible anti-patterns, or that those
detected are indeed true anti-patterns. Concerning the application of refactorings, we man-
ually validate the outcome of refactorings performed in source code compared to the ones
applied to the abstract model to ensure that the output values of the objective functions
correspond to the changes performed. However, we rely on the correct representation of the
code by the abstract model. In this study we use PADL [150], which has been used in several
studies concerning anti-patterns, design patterns, and software evolution.

A second threat is the use of MaDUM as proxy to estimate the testing effort, because other
techniques could bring different results. Moreover, MaDUM estimation does not include the
effort of writing and running each test case. Instead, it gives an estimate of the number of test
cases required to test the class and highlights classes with multiple transformers as difficult

93

classes to be tested. Finally, MaDUM only works at the level of unitary testing, without
considering class interactions. Therefore, we can only claim that, no matter the testing
strategy, automated-refactoring approaches should consider the impact of refactorings not
only in terms of design quality but in testing effort.

Threats to internal validity concern our selection of anti-patterns, tools, and analysis method.
In this study we used a particular yet representative subset of anti-patterns as proxy for design
quality.

Conclusion validity threats concern the relation between the treatment and the outcome. We
paid attention not to violate assumptions of the constructed statistical models. In particular,
we used a non-parametric test, Wilcoxon rank sum, that does not require any assumption on
the underlying data distribution.

Threats to external validity concern the possibility to generalize our results. Our study focuses
on four open source software systems having different sizes and belonging to different domains.
Nevertheless, further validation on a larger set of software systems is desirable, considering
systems from different domains, as well as several systems from the same domain. Future
replications of this study are necessary to confirm our findings.

6.7 Chapter Summary

In this chapter, we propose TARF, a novel approach that includes testing effort as a mean
to improve the testability of software systems during refactoring operations. Specifically, we
set out to address the following question:

�
�

�
�

Central Question: Is it possible to improve automated refactoring by considering testing
effort?

We answer this question by performing a case study where we validate TARF using a testbed
comprised of four open-source systems, and found that the solutions proposed by TARF
maintain a compromise between number of anti-patterns corrected, and number of test cases
required to test an OO system, according to MaDUM strategy. We implemented TARF
using four metaheuristics, and found that MO algorithms lead to better results than single
objective GA.

Finally, we assessed the design quality of the solutions proposed using five quality attributes
defined in the hierarchical QMOOD model, and found that we can increase the quality in
terms of reusability, flexibility, understandability, effectiveness, and extendibility.

94

CHAPTER 7 IMPROVING AUTOMATED REFACTORING BY
CONTROLLING FOR ENERGY EFFICIENCY

7.1 Introduction

During the last five years, and with the exponential growth of the market of mobile apps [167],
software engineers have witnessed a radical change in the landscape of software development.
From a design point of view, new challenges have been introduced in the development of
mobile apps such as the constraints related to internal resources, e.g., CPU, memory, and
battery; as well as external resources, e.g., internet access. Moreover, traditional desired
quality attributes, such as functionality and reliability, have been overshadowed by subjective
visual attributes, i.e., “flashiness” [168].

Mobile applications (apps) play a central role in our life today. We use them almost anywhere,
at any time and for everything; e.g., to check our emails, to browse the Internet, and even
to access critical services such as banking and health monitoring. Hence, their reliability
and quality is critical. Similar to traditional desktop applications, mobile apps age as a
consequence of changes in their functionality, bug-fixing, and introduction of new features,
which sometimes lead to the deterioration of the initial design [169]. Beside OO anti-patterns,
which we studied in previous chapters of this dissertation, resource management is critical for
mobile apps. Developers should avoid anti-patterns that cause battery drain. An example of
such anti-pattern is Binding resources too early class [170]. This anti-pattern occurs when a
class switches on energy-intensive components of a mobile device (e.g., Wi-Fi, GPS) when
they cannot interact with the user. Another example is the use of private getters and setters
to access class attributes in a class, instead of accessing directly the attributes. The Android
documentation [51] strongly recommends to avoid this anti-pattern as virtual method calls
are up to seven times more expensive than using direct field access [51].

Previous studies have pointed out the negative impact of anti-patterns on change-proneness [4],
fault-proneness [171], and maintenance effort [172]. In the context of mobile apps, Hecht et
al. [110] found that anti-patterns are prevalent along the evolution of mobile apps. They
also confirmed the observation made by Chatzigeorgiou and Manakos [10] that anti-patterns
tend to remain in systems through several releases, unless a major change is performed on
the system.

One critical concern of mobile apps development is reducing energy consumption, due to the
short life-time of mobile device’s batteries. Some research studies have shown that refac-

95

torings that are applied to remove anti-patterns can impact the energy consumption of a
system [118, 173, 122]. Hecht et al. [49] observed an improvement in the user interface
and memory performance of mobile apps when correcting Android anti-patterns, like private
getters and setters, HashMap usage and member ignoring method, confirming the need of
refactoring approaches that support mobile app developers.

We, therefore, set out to address the following question:

�
�

�
�

Central Question: Is it possible to improve automated refactoring of mobile apps by
considering energy concerns?

In this chapter we provide mobile developers with a refactoring solution that address energy
as well as OO design concerns. We propose a multiobjective refactoring approach called
Energy-Aware Refactoring approach for MObile apps (EARMO) to detect and correct anti-
patterns in mobile apps, while improving energy consumption.

The results of this chapter can be summarized in the following contributions.

1. An empirical study of the impact of anti-patterns on the energy consumption of mobile
apps. We propose a methodology for a correct measurement of the energy consumption
of mobile apps. Our obtained results provide evidence to support the claim that devel-
oper’s design choices can improve/decrease the energy consumption of mobile apps.

2. A novel automated refactoring approach to improve the design quality of mobile apps,
while controlling energy consumption. EARMO provides developers with the best
trade-off between two conflicted objectives, design quality and energy.

3. The evaluation of the effectiveness of EARMO using three different multiobjective
metaheuristics from which EARMO is able to correct a median of 84% anti-patterns.

4. A manual evaluation of the refactoring recommendations proposed by EARMO for 13
apps. The manual evaluation is conducted in two steps. (1) Each refactoring operation
in a sequence is validated and applied to the corresponding app. (2) The app is executed
in a typical user context and the energy consumption gain is recorded. The sequences
generated by EARMO achieve a median precision score of 68%. EARMO precision is
close to previously published refactoring approaches (e.g., Ouni et al. [174] reports that
Kessentini et al. [24] achieves a precision of 62-63% and Harman et al. [45]. a precision
of 63-66%). In addition, EARMO extended the battery life by up to 29 minutes when
running in isolation a refactored multimedia app with default settings (no Wi-Fi, no
location services, minimum screen brightness).

96

5. From the manual validation, we provide guidelines for toolsmiths interested in gener-
ating automated refactoring tools.

6. We perform the evaluation of the design quality of the refactored apps using a QMOOD [40]
and report a median improvement of 41% in extendibility of app’s design.

7. We evaluate the usefulness of the solutions proposed by EARMO from the perspective
of mobile developers through a qualitative study and achieve an acceptance rate of
68%. These results complement the manual verification in terms of precision and design
quality (e.g., extendability, reusability), and serve as external evaluation.

7.1.1 Energy measurement of mobile apps

Energy consumption, a critical concern for mobile and embedded devices, has been typically
targeted from the point of view of hardware and lower-architecture layers by the research
community. Energy is defined as the capacity of doing work while power is the rate of doing
work or the rate of using energy. In our case, the amount of total energy used by a device
within a period of time is the energy consumption. Energy (E) is measured in joules (J)
while power (P) is measured in watts (W). Energy is equal to power times the time period
T in seconds. Therefore, E = P · T . For instance, if a task uses two watts of power for five
seconds it consumes 10 Joules of energy.

One of the most used energy hardware profilers is the Monsoon Power Monitor 1. It provides
a power measurement solution for any single lithium (Li) powered mobile device rated at 4.5
volts (maximum three amps) or lower. It samples the energy consumption of the connected
device at a frequency of 5 kHz, therefore a measure is taken each 0.2 milliseconds. Other
works use the LEAP power measurement device [175]. LEAP contains an ATOM proces-
sor that runs Android-x86 version 2.x. Its analog-to-digital converter samples CPU energy
consumption at a frequency of 10 kHz.

In this chapter, energy consumption is measured using a more precise environment. Specifi-
cally we use a digital oscilloscope TiePie Handyscope HS5 which offers the LibTiePie SDK,
a cross platform library for using TiePie engineering USB oscilloscopes through third party
software. We use this device because it allows to measure using higher frequencies than the
Monsoon and LEAP. The mobile phone is powered by a power supply and, between both, we
connect, in series, a uCurrent 2 device, which is a precision current adapter for multimeters
converting the input current (I) in a proportional output voltage (Vout). Knowing I and the
voltage supplied by the power supply (Vsup), we use the Ohm’s Law to calculate the power

1. https://www.msoon.com/LabEquipment/PowerMonitor/
2. http://www.eevblog.com/projects/ucurrent/

https://www.msoon.com/LabEquipment/PowerMonitor/
http://www.eevblog.com/projects/ucurrent/

97

usage (P) as P = Vsup · I. The resolution is set up to 16 bits and the frequency to 125 kHz,
therefore a measure is taken each eight microseconds. We calculate the energy associated to
each sample as E = P · T = P · (8 · 10−6)s. Where P is the power of the smart-phone and
T is the period sampling in seconds. The total energy consumption is the sum of the energy
associated to each sample.

A low sampling frequency can make it very hard to assess the energy consumption of any
given method. Consider, for example, the glTron 3 application. According to our measure-
ments, the method com.glTron.Video.HUD.draw has an execution time (inclusive of called
methods) of 91.96 milliseconds. Thus, sampling at 125 kHz (one sample each eight microsec-
onds) or 10 kHz (one sample each 0.1 milliseconds) does not make a big difference as enough
data points will be collected. However, if we consider for the same package (com.glTron)
the method ...Video.GraphicUtils.ConvToFloatBuffer, its execution lasts only 732 mi-
croseconds. Measuring at 10 kHz, limits the collection of data points about this method
to no more than 7 samples, while measuring at 125 kHz we could collect data points up
to 92 samples. In essence, if a method execution last more than one millisecond, such as
in com.glTron.Video.HUD.draw, the errors will generally averaged out, making the energy
estimation error low or even negligible. However, in methods of short duration (less than
one millisecond) the error may be higher. Li et al. [176] studied what granularity of mea-
surements is sufficient for measuring energy consumption. They concluded that nanosecond
level measurement is sufficient to capture all API calls and methods. This raises another
problem, the bottleneck in high-frequency power sampling due to the storage system, which
cannot save power samples at the same frequency as the power meter can generate them.
However, Saborido et al. [177] found that sampling at 125 kHz just accounts for about 0.7%
underestimation error. Therefore we consider that 125 kHz is sufficient to measure the energy
consumption of mobile applications.

In our experiments, we used a LG Nexus 4 Android phone equipped with a quad-core CPU,
a 4.7-inch screen and running the Android Lollipop operating system (version 5.1.1, Build
number LMY47V). We believe that this phone is a good representative of the current gen-
eration of Android mobile phones because more than three million have been sold since its
release in 2013 4, and the latest version of Android Studio includes a virtual device image of
it for debugging.

We connect the phone to an external power supplier which is connected to the phone’s moth-
erboard, thus we avoid any kind of interference with the phone battery in our measurements.

3. https://f-droid.org/wiki/page/com.glTron
4. https://goo.gl/6guUpf

https://goo.gl/6guUpf

98

The diagram of the connection is shown in Figure 7.1. Note that although we use an external
power supplier, the battery has to be connected to the phone to work. Hence, we do not
connect the positive pole of the battery with the phone.

To transfer and receive data from the phone to the computer, we use a USB cable, and to
avoid interference in our measurements as a result of the USB charging function, we wrote
an application to disable it 5. This application is free and it is available for download in the
Play Store 6.

power

supply

+
-

uCurrent

input

output

+-

+ -

+
-

battery

+
-

phone

1
4

Figure 7.1 Connection between power supply and the Nexus 4 phone.

7.2 Preliminary Study

In this section we present a preliminary study that aimed to measure the impact of anti-
patterns on energy consumption. Understanding if anti-patterns affect the energy consump-
tion of mobile apps is important for researchers and practitioners interested in improving the
design of apps through refactoring. Specifically, if anti-patterns do not significantly impact
energy consumption, then it is not necessary to control for energy consumption during a refac-
toring process. On the other hand, if anti-patterns significantly affect energy consumption,
developers and practitioners should be equipped with refactoring approaches that control for
energy consumption during the refactoring process, in order to prevent a deterioration of the
energy efficiency of apps.

We formulate the research questions of this preliminary study as follows:

(PQ1) Do anti-patterns influence energy consumption?
The rationale behind this question is to determine if the energy consumption of mobile apps
with anti-patterns differs from the energy consumption of apps without anti-patterns. We
test the following null hypothesis: H01: there is no difference between the energy consumption
of apps containing anti-patterns and apps without anti-patterns.

(PQ2) Do anti-pattern’s types influence energy consumption differently?
In this research question, we analyze whether certain types of anti-patterns lead to more

5. The mobile phone has to be rooted first.
6. https://goo.gl/wyUcdD

https://goo.gl/wyUcdD

99

energy consumption than others. We test the following null hypothesis: H02: there is no
difference between the energy consumption of apps containing different types of anti-patterns.

7.2.1 Design of the Preliminary Study

As mentioned earlier, we consider two categories of anti-patterns: (i) Object-oriented (OO)
anti-patterns [3, 47], and (ii) Android anti-patterns (AA) defined by [48, 51]. Concerning
(AA), previous works have evaluated the impact on energy consumption of private getter and
setters [178, 31, 179] and found an improvement in energy consumption after refactoring.

The anti-patterns considered in this chapter are: Blob (BL), Lazy Class (LC), Long
Parameter list (LP), Refused Bequest (RB), Speculative Generality (SG). For
Android, we considered Binding resources too early (BE), HashMap usage (HMU),
Private getters and setters (PGS). The definitions can be found in Table 2.1.

We select these anti-patterns because they have been found in mobile apps [110, 49], and
they are well defined in the literature with recommended steps to remove them [47, 3, 48, 51].

To study the impact of the anti-patterns, we write a web crawler to download apps from
F-droid, an open-source Android app repository 7. The total number of apps retrieved by
the date of April 14th 2016 is 200. These apps come from five different categories (Games,
Science and Education, Sports and health, Navigation, and Multimedia). We filtered out 47
apps which Android version is lower than 2.1 because our transformation environment runs
Windows 10 which supports Android SDK 2.1 or higher.

From the remaining 153 apps, we take a random sample that was determined using common
procedures in survey design, with a confidence interval of 10% and a confidence level of 95%.
Using these values, we obtained that the required sample size is 59 apps. This means that
the results we get from our empirical study have an error at most of 10% with probability
0.95.

Next, we filtered apps where libraries referenced are missing or incomplete; apps that required
to have username and password for specific websites; apps written in foreign languages and
that we could not fully understand their functionality; apps that does not compile; apps that
crashed in the middle of execution, or simply would not run in our phone device. The last
filter is that the selected apps should contain at least one instance of any of the anti-patterns
studied.

After discarding the apps that do not respect the selection criteria, we end-up with a dataset
of 20 apps. Table 7.1 shows the selected apps.

7. https://f-droid.org/

https://f-droid.org/

100

Table 7.1 Apps used to conduct the preliminary study on Anti-patterns and Energy con-
sumption.

App Version LOC Category Description
blackjacktrainer 0.1 3783 Games Learning BlackJack
calculator 5.1.1 13985 Science & Education Make calculations
gltron 1.1.2 12074 Games 3D lightbike racing game
kindmind 1.0.0 6555 Sports & Health Be aware of sad feelings and unmet needs
matrixcalc 1.5 2416 Science & Education Matrix calculator
monsterhunter 1.0.4 27368 Games Reference for Monster Hunter 3 game
mylocation 1.2.1 1146 Navigation Share your location
oddscalculator 1.2 2226 Games Bulgarian card game odds calculator
prism 1.2 4277 Science & Education Demonstrates the basics of ray diagrams
quicksnap 1.0.1 18487 Multimedia Basic camera app
SASAbus 0.2.3 9349 Navigation Bus schedule for South Tyrol
scrabble 1.2 3165 Games Scrabble in french
soundmanager 2.1.0 5307 Multimedia Volume level scheduler
speedometer 1 139 Navigation Simple Speedometer
stk 0.3 4493 Games A 3D open-source arcade racer
sudowars 1.1 22837 Games Multiplayer sudoku
swjournal 1.5 5955 Sports & Health Track your workouts
tapsoffire 1.0.5 19920 Games Guitar game
vitoshadm 1.1 567 Games Helps you to make decisions
words 1.6 7125 Science & Education Helps to study vocabulary for IELTS exam

7.2.2 Data Extraction

The data extraction process is comprised of the following steps, which are summarized in
Figure 7.2.

EXTRACTION OF
ANDROID APPS

1

DETECTION OF
ANTI-PATTERNS

AND REFACTORING
CANDIDATES

2

GENERATION OF
SCENARIOS

3

REFACTORING OF
MOBILE APPS

4

MEASUREMENT
OF ENERGY

CONSUMPTION

5

20 APPS
6012 FILES

864 GB

Figure 7.2 Data extraction process.

1. Extraction of android apps. We wrote a script to download the apps from F-
droid repository. This script retrieves the name of the app, the link to the source
code, Android API version, and the number of Java files. We use the API version to
discriminate apps that are not compatible with our phone, and the number of Java
files to filter apps with only one class. After filtering the apps, we import the source
code in Eclipse (for the older versions) or Android Studio and ensure that they can be
compiled and executed.

2. Detection of anti-patterns and refactoring candidates. The detection and gen-

101

eration of refactoring candidates is performed using our previous automated approach
ReCon [145]. We use ReCon’s current implementation for correcting object-oriented
anti-patterns, and add two new OO anti-patterns (Blob and Refused bequest); we also
add three Android anti-patterns based on the guidelines defined by Gottschalk [48],
and the Android documentation [51]. As we explained before, in Chapter 4, ReCon
supports two styles, root-canal (i.e., to analyze all the classes in the system) and floss
refactoring (i.e., to analyze only the classes related to an active task in current de-
veloper’s workspace provided by a task management integration plug-in). We use the
root-canal style as we are interested in improving the complete design of the studied
apps.

3. Generation of scenarios. For each app we define a scenario that exercises the code
containing anti-patterns using the Android application HiroMacro 8. This software
allows us to generate scripts containing touch and move events, imitating a user inter-
acting with the app on the phone, to be executed several times without introducing
variations in execution time due to user fatigue, or skillfulness. To automatize the
measurement of the studied apps we convert the defined scenarios (HiroMacro scripts)
to Monkeyrunner format. Thus, the collected actions can be played automatically
from a script using the Monkeyrunner [180] Android tool. In Table 7.2 we provide a
brief description of each scenario. Note that the scenarios are generated with the main
objective of executing the code segment(s) related to the anti-patterns in the original
version, and the refactorings applied in the refactored version, and as a disclaimer,
many of them may seem trivial, but fit for the purpose of this preliminary study.

4. Refactoring of mobile apps. We use Android Studio and Eclipse refactoring-tool-
support for applying the refactorings suggested by ReCon. For some anti-patterns
instances we have to refactor them manually as the aforementioned IDEs do not provide
tool support. To ensure that a refactored code fragment is executed in the scenario,
we first set breakpoints to validate that the debugger stops on it. If this occurs, we
build the corresponding apk and check that method invocations to the refactored code
appeared in the execution trace. To activate the generation of execution trace file,
we use the methods provided in Android Debug Class [181], for both original and
refactored versions. The trace file contains information about all the methods executed
with respect to time, that we use in the next step.

5. Measurement of energy consumption. As we mention in Section 2.1, we mea-
sure energy consumption of mobile apps using a precise digital oscilloscope TiePie

8. https://play.google.com/store/apps/details?id=com.prohiro.macro

102

Table 7.2 Description and duration (in seconds) of scenarios generated for the studied apps
in our preliminary study.

App Scenario Duration
blackjacktrainer Press in {...}, then {settings}, and close app. 14.87
Calculator Make the operation six times five and close app. 17.94
GLTron Wait until app is loaded and close app. 33.94
kindmind Press in first category and close app. 21.37
matrixcalc Fill matrix with number five, press {Calculate}, and close app. 52.47
monsterhunter Press in {Weapons}, press in first category, select first weapon,

press the {+} button, select the {My Wishlist}, press {Ok}, and
close the app.

16.39

mylocation Press the square button, go back, and close app. 15.59
oddscalculator Wait until app is loaded and close app. 15.72
prism Wait until app is loaded and close app. 10.84
quicksnap Wait until app is loaded and close app. 13.8
SASAbus Wait until DB is downloaded, press {OK} button, wait until

maps are downloaded, and close app.
71.72

scrabble Wait to load board and close app. 35.83
soundmanager Go to menu, mute/unmute, and close app. 18.74
speedometer Wait until app is loaded and close app. 13.99
stk Wait until app is loaded and content downloaded and close app. 35.1
sudoWars Wait until app is loaded and close app. 10.76
swjournal Start a workout, filling the two fields, and close app. 28.87
tapsoffire Press in {Play}, slide down, press over the green color, press

{Play}, {API}, {Medium}, and {Play}; close app.
25.96

vitoshadm Wait until app is loaded and close app. 14.78
words Wait until app is loaded and close app. 10.75

Handyscope HS5 which allows us to measure using high frequencies and directly stor-
ing the collected results to the personal computer at runtime.
In our experiments each app is run 30 times to get median results and, for each run,
the app is uninstalled after its usage and the cache is cleaned. A description of the
followed steps is given in Algorithm 9, which has been implemented as a Python script.
As it is described, all apps are executed before a new run is started. Thus, we aim
to avoid that cache memory on the phone stores information related to the app run
that can cause to run faster after some executions. In addition, before the experiments,
the screen brightness is set to the minimum value and the phone is set to keep the
screen on. In order to avoid any kind of interferences during the measurements, only
the essential Android services are run on the phone (for example, we deactivate Wi-Fi
if the app does not require it to be correctly executed, etc.).
Our script starts the oscilloscope and the app, which we modify to generate the execu-
tion trace. Both are different files where the first time-stamp is zero.
When users launch an app, the app goes through an initialization process running the
methods onCreate, onStart, and onResume. In Figure 7.3 we present a simplified
flow-chart of the state paths of a single-activity Android app. The app is visible after
the onStart method is executed and the user can interact with the app after the
onResume method is executed. We consider that an Android app is completely loaded

103

after method onResume ends. The times reported in Table 3 are the times required to
completely load each app and run the corresponding scenario. For all scenarios, the
last action of the scenario is to manually close the app, which takes between three and
five seconds.
Additionally, the generated execution traces contain, for each method call, global exe-
cution times relative to the complete load of apps (whose global time is zero). Based
on that we consider the global start time of the method onCreate as the instant of
time when the execution trace is created once the app is launched.
In order to estimate the existing gap between energy and execution traces we do the
following. Once we start the oscilloscope we introduce a timer to measure the time
needed to launch an Android app. We consider the difference between this time and the
time when the method onCreate is executed as the gap between energy and execution
traces. For instance, if we consider that an Android app is launched in T seconds and
the execution trace is created in instant of time N , the existing gap between the energy
and execution trace is calculated as T − N . Because for each app’s run we know the
time required to launch the app and when the method onCreate is executed, the gap
between traces for each app’s run is known.
According to our experiments Android apps are launched in the range of [0.76, 0.92]
seconds (average 0.83 seconds = 830000 microseconds) and the method onCreate is
executed, on average, 0.00009 seconds (90 microseconds) after the app is launched. It
means that, in average, the existing gap is (830000-90) = 829010 microseconds. For
each app’s independent run, energy and execution traces are aligned considering the
estimated gap shift.
When the oscilloscope is started it begins to store in memory energy measurements
which are written to a Comma Separated Values (CSV) file when the scenario associated
to the app finishes. Once Algorithm 9 finishes, we have two files for each app and run:
the energy trace and the execution trace. Using the existing timestamp in energy
traces and the starting and ending time of methods calls in execution traces, energy
consumption is calculated for each method called and this information is saved in a
new CSV file for each app and run. From these files, we filtered out method names
that does not belong to the namespace of the app. For example, for Calculator app,
the main activity is located in the package com.android2.calculator3, and we only
consider the methods included in this package as they correspond to the source code
that we analyze to generate refactoring opportunities.The rationale of removing energy
consumption of code that is not inside the package of the app is that we did not detect
anti-patterns, neither propose refactoring for those classes. Hence, with the aim of

104

App Launched onCreate() onResume()

Another app
comes

 into the
 foreground

onPause() onStop()

onDestroy() App Shutdown

App is running

User
 Returns
 to the
 app

No

Yes

Yes

No

onStart()

onRestart()

User
navigates

To the
app

Yes

No

Figure 7.3 Android App flow-chart

removing noise in our measurements (in case that most of an app’s energy consumption
is on the library or native functions) we focus on the code that contains anti-patterns,
to isolate the effect of applying refactoring on energy consumption. Finally, the median
and average energy consumption of each app over the 30 runs is calculated.

Algorithm 9: Steps to collect energy consumption.
1 forall runs do
2 forall apps do
3 Install app in the phone (using adb).
4 Start oscilloscope using a script from our test PC.
5 Run app (using adb).
6 Play scenario (using Monkeyrunner).
7 Stop oscilloscope.
8 Download execution trace from the phone (using adb).
9 Stop app (using adb).

10 Clean app files in the phone (using adb).
11 Uninstall app (using adb).
12 end
13 end

7.2.3 Data Analysis

In the following we describe the dependent and independent variables of this preliminary
study, and the statistical procedures used to address each research question. For all statistical
tests, we assume a significance level of 5%. In total we collected 864 GB of data from which
391 GB correspond to energy traces, 329 GB to execution traces. The amount of data

105

generated from computing the energy consumption of methods calls using these traces is
144 GB.

(PQ1): Do anti-patterns influence energy consumption?
For PQ1, the dependent variable is the energy consumption for each app version (original,
refactored). The independent variable is the occurrence of any of the anti-patterns studied,
and it is true for the original versions of the apps studied, and false for the refactored ones.
We statistically compare the energy consumption between the original and refactored design
using a non-parametric test, Mann-Whitney U test. Because we do not know beforehand
if the energy consumption will be higher in one direction or in the other, we perform a
two-tailed test. For estimating the magnitude of the differences of means between original
and refactored designs, we use the non-parametric effect size measure Cliff’s δ (ES), which
indicates the magnitude of the effect size [154] of the treatment on the dependent variable.
The effect size is small for 0.147 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474, and large for d ≥
0.474 [155].

(PQ2): Do anti-pattern’s types influence energy consumption differently?
For PQ2, we follow the same methodology as PQ1. For each type of anti-pattern, we have
three different apps containing an instance of the anti-pattern. We refactor these apps to
obtain versions without the anti-pattern. We measure the energy consumption of the original
and refactored versions of the apps 30 times to obtain the values of the dependent variable.
The independent variable is the existence of the type of anti-pattern.

7.2.4 Results and Discussion of the Preliminary Study

In Table 7.3 we present the percentage change in median energy consumption after removing
one instance of anti-pattern at time, γ(E ′, E0). This value is calculated using the following
expression.

γ(E ′, E0) = med(E ′)−med(E0)
med(E0) × 100 (7.1)

Where the energy consumption of the app after removing an anti-pattern is represented by E ′,
while the energy consumption of the original app is E0. med(E) is the median of the energy
consumption values of the 30 independent runs. Negative values indicate a reduction of energy
consumption after refactoring, positive values indicate an increase of energy consumption. In
total, we manually correct 24 anti-patterns inside the set of apps that make up our testbed.
In seven instances (i.e., 30%) the differences are statistically significant, with Cliff’s δ effect
sizes ranging from small to large. Specifically, we obtained three apps with large effect size:
speedometer, gltron, and soundmanager (two types of anti-patterns); two cases with medium

106

effect size: oddscalculator, words; and one with small effect size, vitoshadm. Therefore we
reject H01 for these seven apps.

�

�

	
Overall, our results suggest that different types of anti-patterns may impact the energy
consumption of apps differently. Our next research question (i.e., PQ2) investigates this
hypothesis in more details.

To answer PQ2, on the impact of different types of anti-patterns on energy consumption, we
present in Figure 7.4 the percentage change of the energy consumption after removing each
type of anti-pattern studied. For the instances where the results are statistically significant
(p− value < 0.05) we add an “∗” symbol, the exact value and ES is shown in Table 7.3.

Regarding object-oriented (OO) anti-patterns, on top of Figure 7.4, we observe that
removing lazy class reduces energy consumption in blackJacktrainer. This trend holds for
tapsoffire and soundmanager respectively, with the latter one having statistically significance
and magnitude of the difference (i.e., ES) is large. In the case of Refused Bequest, two out of
three apps show that removing the anti-pattern saves energy, and the difference is statistically
significant for vitoshadm. For the Blob anti-pattern, all refactored versions report a decrease
in energy consumption, though the differences are not statistically significant.

−1.56

−4.12

−62.96*

−1.17

−0.07

−2.21

−0.90
−1.60*

−6.01*

−8.38*

−0.82

−2.29*

−0.33

−5.96*

−3.52

0.68

0.57

0.38

1.47

−0.67

−2.80*

0.56

−0.03
0.88

words
vitoshadm
tapsoffire
swjournal
sudowars

stk
speedometer

soundmanager
scrabble

SASAbus
quicksnap

prism
oddscalculator

mylocation
monsterhunter

matrixcalc
kindmind

gltron
calculator

blackjacktrainer

BE BL

H
M

U

PG
S LC LP R
B

SG

Anti−pattern type

A
pp

lic
at

io
n

% change
in energy
consumption

(1,2]
(0.5,1]
(0,0.5]
(−0.5,−0.01]
(−2,−0.5]
(−4,−2]
(−10,−4]
[−70,−10]

Figure 7.4 Percentage change in median energy consumption when removing different types
of anti-patterns

Concerning Long Parameter list (LP), and Speculative Generality (SG), both report a nega-
tive impact on energy consumption after refactoring. While for LP, all the apps point toward

107

Table 7.3 Percentage change in median energy consumption of apps after removing one in-
stance of anti-pattern at time, Mann—Whitney U Test and Cliff′s δ Effect Size (ES).

App γ(E′, E0) p− value ES Magnitude
blackjacktrainer -0.63 0.2560 -0.15 small
calculator -1.17 0.1191 -0.25 small
calculator -0.90 0.4280 -0.10 negligible
gltron -1.60 2.08E-05 -0.70 large
kindmind 0.68 0.2988 0.16 small
matrixcalc 0.56 0.4898 0.09 negligible
monsterhunter 0.50 0.5602 -0.07 negligible
mylocation -1.56 0.5699 -0.03 negligible
oddscalculator -6.01 0.0221 -0.34 medium
prism 1.50 0.0919 0.17 small
prism -0.03 0.7151 0.03 negligible
quicksnap -0.07 0.9515 -0.03 negligible
quicksnap 0.89 0.4898 0.04 negligible
SASAbus -4.12 0.2286 -0.13 negligible
scrabble -0.67 0.9838 -0.04 negligible
soundmanager -8.38 0.0001 -0.63 large
soundmanager -5.96 0.0005 -0.53 large
speedometer -62.96 3.73E-09 -0.97 large
stk 0.38 0.5028 0.02 negligible
sudowars -0.82 0.6408 0.04 negligible
swjournal -2.21 0.2286 -0.23 small
tapsoffire -3.52 0.3599 -0.22 small
vitoshadm -2.80 0.0345 -0.29 small
words -2.29 0.0005 -0.44 medium

more energy consumption, in the case of SG, the energy consumption is increased in two out
of three apps after refactoring. We explain the result obtained for LP by the fact that the
creation of a new object (i.e., the parameter object that contains the long list of parameters)
adds to some extent more memory usage. For SG we do not have a plausible explanation
for this trend. For both anti-patterns, the obtained differences in energy consumption is
not statistically significant, hence we cannot conclude that these two anti-patterns always
increase or decrease energy consumption.

Regarding Android anti-patterns. For HashMap usage (HMU) and Private getters and
setters (PGS), we obtained statistically significant results for two apps. For Binding Re-
sources too early (BE), the result is statistically significant for one app. In all cases, apps
that contained these anti-patterns consumed more energy than their refactored versions that
did not contained the anti-patterns. This finding is consistent with the recommendation of
previous works (i.e., [170, 51]) that advise to remove HMU, PGS, and BE from Android apps,
because of their negative effects on energy consumption. Note that the amount of energy
saved is influenced by the context in which the application runs. For example, SASAbus,
which is a bus schedule app, downloads the latest bus schedule at start, consuming a con-
siderable amount of data and energy. As a result, the gain in energy for relocating the call
method that starts the GPS device is negligible in comparison to the overall scenario. Mylo-
cation is a simpler app, that only provides the coordinated position of mobile user. This app

108

optimizes the use of the GPS device by disabling several parameters, like altitude and speed.
It also sets the precision to coarse (approximate location [182], and the power requirements
to low. For this app, we observe a consistent improvement when the anti-pattern is removed,
but in a small amount. On the other hand, we have speedometer, which is a simple app
as well, that measures user’s speed, but using high precision mode. High precision mode
uses GPS and internet data at the same time to estimate location with high accuracy. In
speedometer, we observe a high reduction in energy consumption when the anti-pattern is
corrected, in comparison with the previous two apps.

�

�

�

�

In summary, there is evidence to show that removing Binding resources too early,
Private getters and setters, Refused Bequest, and Lazy class anti-patterns can
improve energy efficiency in some cases. We do not find any statistically significant cases
were removing an anti-pattern increases energy consumption. Removing Blob, Long Pa-
rameter List, and Speculative Generality anti-patterns does not produce a statistically
significant increase or decrease.

The impact of different types of anti-patterns on the energy consumption of mobile apps is
not the same. Hence, we reject H02.

7.3 Energy-Aware Automated Refactoring of Mobile Apps

After determining in Section 7.2 that the occurrence of anti-patterns impacts the energy
consumption of mobile apps, we leverage this knowledge to propose an approach to improve
the design quality of mobile apps, while controlling energy consumption. Our proposed
approach is based on a search-based process where we generate refactoring sequences to
improve the design of an app. This process involves evaluating several sequences of refactoring
iteratively and the resultant design in terms of design quality and energy consumption.
Measuring in real-time the energy consumption of a refactoring sequence can be prohibitive,
because it requires to apply each refactoring element of the sequence in the code, compile
it, generate the binary code (APK) and download it into the phone; all of these steps for
each time the search-based process requires to evaluate a solution. That is why we define a
strategy to estimate the impact of each refactoring operation on energy consumption, based
on the results obtained in our preliminary study (Section 7.2) and without measuring during
the search process. The strategy consists of the following steps:

109

1. We compute the energy consumption of an app using the following formulation:

EC(a) =
∑
m∈M

EC(am) (7.2)

Where M is the set of methods in a.

2. We prepare two versions of the same app with and without one instance of an anti-
pattern type, and we call them aORI , and ak. To isolate possible aggregation effects,
we remove only one instance of anti-pattern using the same refactoring operations. For
example, if we want to remove a Lazy class, we apply inline class to the class that
contained that anti-pattern.

3. The energy consumption coefficient of a refactoring applied to remove an anti-pattern
of type k, in app a is calculated using the following expression.

δEC(ak) = med(EC(ak))−med(EC(aORI))
med(EC(aORI)) (7.3)

Wheremed(.) is the median value of the 30 independent runs for EC(ak) and EC(aORI).
If the value of δEC(ak) is negative, it means that the refactored version consumes less
energy. On the contrary, if this value is positive, it means that the refactored version
consumes more energy than the original version.

4. To determine a global refactoring energy coefficient δEC(k), we take three apps from
our testbed for each type of anti-pattern k. δEC(k) is calculated using the following
expression.

δEC(k) = med(δEC(ak));∀ak ∈ Ak (7.4)

Where Ak is the set of apps that were refactored to remove a single instance of anti-
pattern type k.

In the following, we describe the key components of our proposed approach EARMO, for the
correction of anti-patterns while controlling for energy consumption.

7.3.1 EARMO overview

EARMO is comprised of four steps, depicted in Algorithm 10. The first step consists in
estimating the energy consumption of an app, running a defined scenario. In the second
step, we build an abstract representation of the mobile app’s design, i.e., code meta-model.
In the third step, the code meta-model is visited to search for anti-pattern occurrences. Once
the list of anti-patterns is generated, the proposed approach determines a set of refactoring

110

opportunities based on a series of pre- and post-conditions extracted from the anti-patterns
literature [3, 47, 170, 51]. In the final step, a multiobjective search-based approach is run
to find the best sequence of refactorings that can be legally applied to the code, from the
refactoring opportunities list generated in the previous step. The solutions produced by the
proposed approach meet two conflicting objectives: 1) remove a maximum number of anti-
patterns in the system, and 2) improve the energy consumption of the code design. In the
following, we describe in detail each of these steps.

7.3.2 Step 1: Energy consumption estimation

This step requires to provide (1) the energy consumption of the app (E0). Developers can
measure E0 by setting an energy estimation environment similar to the one presented in Sec-
tion 7.2, or using a dedicated hardware-based energy measurement tool like GreenMiner [117].
(2) The coefficient δEC(k) of each refactoring type analyzed. We derive δEC(k) values for
each refactoring type based on the results of the preliminary study. EARMO uses this infor-
mation in the last step to evaluate the energy consumption of a candidate refactoring solution
during the search-based process.

7.3.3 Step 2: Code meta-model generation

In this step we follow the same procedure that in previous chapters to generate a light-weight
representation (a meta-model) of a mobile app, using static code analysis techniques, with
the aim of evolving the current design into an improved version in terms of design quality
and energy consumption.

7.3.4 Step 3: Code meta-model assessment

In this step we assess the quality of the code-meta model by (1) identifying anti-patterns in
its entities, and (2) determining refactoring operations to correct them. For example, the
correction of Binding resources too early anti-pattern can be divided in the following steps:
detect classes with code statements that initialize energy-intensive components, e.g., GPS or
Wi-Fi, before the user or the app can interact with them; move the conflicting statements
from its current position to a more appropriate method, e.g., when the app interacts with
the user, preventing an unnecessary waste of energy.

111

Algorithm 10: EARMO Approach
Input : App to refactor (App), scenario (scen)
Output: Non-dominated refactoring sequences

1 Pseudocode EARMO(Mobile app)
2 E0 = Energy consumption measurement (App, scen)

/* We estimate the energy consumption of an app to estimate the energy improvement during our
search-based approach */

3 AM=Code meta-model generation (App)
/* From the source code generate a light-weight representation of the code */

4 RA=Code meta-model assessment (AM)
/* 1. Detect anti-patterns in the system and generate a map of classes that contain anti-patterns

*/
/* 2. Generate a list of refactoring operations to correct anti-patterns */

5 Generation of optimal set of refactoring sequences (AM, RA, E0)
/* This is a generic template of the EARMO algorithm that finds the optimal set of refactoring

sequences */
6 Procedure Generation of an optimal set of refactoring sequences(AM, RA, E0)
7 P0 = GenerateInitialPopulation(RA)
8 X0 = ∅

/* X is the set of non-dominated solutions */
/* Evaluation of P0 */

9 for all Si ∈ P0 do
/* Si is a refactoring sequence */

10 AM ′ = clone(AM)
11 apply_refactorings(AM ′, Si)
12 compute_Design_Quality(AM ′, Si)
13 compute_Energy_Consumption(AM ′, Si, E0)
14 end for

/* Update the set of non-dominated solutions found in this first sampling */
15 X0 = Update(X0, P0)
16 t = 0
17 while not StoppingCriterion do
18 t = t+ 1
19 Pt = V ariation_Operators(Pt−1)
20 for all Si ∈ Pt do
21 AM ′ = clone(AM)
22 apply_refactorings(AM ′, Si)
23 compute_Design_Quality(AM ′, Si)
24 estimate_Energy_Consumption(AM ′, Si, E0)
25 end for
26 Xt = Update(Xt, Pt)
27 end while
28 best_solution = Xt
29 return best_solutions

7.3.5 Step 4: Generation of optimal set of refactoring sequences

In this final step, we aim to find different refactoring sequences that remove a maximum
number of anti-patterns, while improving the energy consumption of mobile apps. Hence,
we use EMO algorithms to obtain from all the set of possible refactoring combinations, the
optimal solutions, i.e., the ones that are not dominated. In the following, we describe the
key elements of our MO optimization process.

112

Solution representation

We represent a refactoring solution as a vector, where each element represents a refac-
toring operation (RO) to be applied, e.g., a subset of refactoring candidates obtained by
EARMO (cf. Sections 4.4 and 6.4).

Selection operator

The selection operator controls the number of copies of an individual (solution) in the next
generations, according to its quality (fitness). Examples of selection operators are tournament
selection or fitness proportionate selection [183].

Variation Operators

The variation operators allow metaheuristics to transform a candidate solution so that it can
be moved through the decision space in the search of the most attractive solutions, and to
escape from local optima. In EMO algorithms, we often find two main variation operators:
crossover and mutation. We implement the same variation operators used in Sections 4.4
and 6.4.

Fitness functions

We use two fitness functions to evaluate the quality and the energy consumption of the
refactoring solutions. The function to evaluate the quality of the design is defined in Equa-
tion (4.1) [36].

To evaluate the energy consumption of an app (expressed in Joules) after refactoring, we
define the following formulation: let E0 be the estimated energy consumption of an app
a, ri a refactoring operation type in a sequence S = (r1, . . . , rn). We estimate the energy
consumption EC(a) of the app resulting from the application of the refactoring sequence
S to the app a as follows: EC(a) = E0 +

n∑
i=1

E0 × δEC(ri), where δEC(ri) is the energy
coefficient value of the refactoring operation ri. We aim to minimize the value of EC during
the search process. In Algorithm 10, we present a generic pseudocode for the EMO algorithms
used by our approach (lines 6-29). The process starts by generating an initial population
of refactoring sequences from the code meta-model assessment step. Next, it applies each
refactoring sequence in the code meta-model and measures the design quality (number of
anti-patterns) and the energy saved by applying the refactorings included in the sequence
(lines 11-13). The next step is to extract the non-dominated solutions (line 15). From line 20

113

to 25, the main loop of the metaheuristic process is executed. The goal is to evolve the initial
population, using the variation operators described before, to converge to the Pareto optimal
front. The stopping criterion, which is defined by the software maintainer, is a fixed number
of evaluations. Finally, in lines 28-29, the optimal refactoring sequences are retrieved.

7.4 Evaluation of EARMO

In this section, we evaluate the effectiveness of EARMO at improving the design quality of
mobile apps while optimizing energy consumption. The quality focus is the improvement of
the design quality and energy consumption of mobile apps, through search-based refactoring.
The perspective is that of researchers interested in developing automated refactoring tools for
mobile apps, and practitioners interested in improving the design quality of their apps while
controlling for energy consumption. The context consists of the 20 Android apps studied
in Section 7.2, and three MO metaheuristics (MOCell, NSGA-II, and SPEA2). We instan-
tiate our generic EARMO approach using the three multiobjective metaheuristics, described
in Section 2.3.4.

As in previous chapters, the code meta-model is generated using Ptidej Tool Suite [156].

The anti-patterns considered in the evaluation of EARMO are the ones described in Sec-
tion 7.2.1. In the following, we describe the strategies implemented in EARMO to correct
anti-patterns in Android. Most of the OO anti-patterns strategies were already presented in
previous chapters (Section 4.4, Section 5.4), except for Refused Bequest anti-pattern which
we describe below.

Replace inheritance with delegation (RIWD). This refactoring is applied when we find a class
that inherits a few methods from its parent class (Refused bequest anti-pattern). To apply
this refactoring, we create a field of the parent class, and for each method that the child use,
we delegate to the field (parent class type), replacing the inheritance by an association. We
present an example of this refactoring in Figure 7.5.

Move resource request to visible method (MRM). To determine the appropriate method to
initialize a high-power-consumption component, it is necessary to understand the vendor
platform. In our case, we illustrate the refactoring based on Android, but the approach
can be extended to other operating systems. As previously discussed in Section 7.2.2, when
users launch an app, the app goes through an initialization process that ends after the
onStart method is executed (the app is visible). After the onResume method is executed,
the user can interact with the app, but not before that. Hence, switching on a high-power-
consumption component in the body of OnCreate is a terrible idea, in terms of energy

114

Parent

-getName()

Child Child

-Parent

-getName()

Parent

-getName()

1

this.Parent.getName()

Figure 7.5 An example of applying RIWD in a class. Original class diagram on the left, and
refactored class diagram on the right.

consumption. Consequently, the refactoring consists in moving any hardware resource request
from onCreate to OnResume.

Inline private getters and setters (IGS). The use of private getters and setters is expensive in
Android mobile devices in comparison to direct field access. Hence, we inline the getters and
setters, and access the private field directly. An illustrative example is provided in Figure 7.6.

Replace HashMap with array map (RHA). ArrayMap is a light-weight-memory mapping data
structure included since Android API 19. The refactoring consists in replacing the import
of java.util.HashMap with android.Util.Arraymap, and any HashMap reference with
ArrayMap. ArrayMap is compatible with the standard Java container APIs (e.g., iterators,
etc), and not further changes are required for this refactoring, as depicted in Figure 7.7.

7.4.1 Descriptive statistics of the studied Apps

Table 7.4 presents relevant information about anti-patterns contained in the studied apps.
The second column contains the number of classes (NOC), and the following columns contain
the occurrences of OO anti-patterns (3-7) and android anti-patterns (8-10). The last two rows
summarize the median and total values for each column.

7.4.2 Research Questions

To better answer the central question of this chapter, we formulate the following research
questions:

(RQ1) To what extent EARMO can remove anti-patterns while controlling for
energy consumption?
This research question aims to assess the effectiveness of EARMO at improving design quality,

115

1
2 p r i v a t e SplashView splashView ;
3
4 p r i v a t e SplashView getSplashView () {
5 r e t u r n splashView ;
6 }
7 // This s e t t e r i s not even used !
8 p r i v a t e void setSplashView (SplashView

splashView) {
9 t h i s . splashView = splashView ;

10 }
11
12 p u b l i c void i n i t i a l i z e () {
13 f i n a l boolean f i r s t L a u n c h =

i s F i r s t L a u n c h () ;
14
15 i f (f i r s t L a u n c h) {
16 getSplashView () . showLoading () ;
17 }
18 . . .
19 getSplashView () . renderImportError () ;
20 . . .
21 getSplashView () .

renderSplashScreenEnded () ;
22 }
23 . . .
24
25 getSplashView () . renderFancyAnimation

() ;
26 }

1 p r i v a t e SplashView splashView ;
2
3 // We i n l i n e p r i v a t e g e t t e r s and s e t t e r s
4 p u b l i c void i n i t i a l i z e () {
5 f i n a l boolean f i r s t L a u n c h =

i s F i r s t L a u n c h () ;
6
7 i f (f i r s t L a u n c h) {
8 splashView . showLoading () ;
9 }

10 . . .
11 splashView . renderImportError () ;
12 . . .
13 splashView . renderSplashScreenEnded () ;
14 }
15 . . .
16
17 splashView . renderFancyAnimation () ;
18 }

Figure 7.6 Example of inline private getters and setters refactoring. Original code on the
left, and refactored code on the right.

1 package com . glTron . Sound ;
2
3 import java . u t i l .HashMap ;
4 . . .
5 p u b l i c c l a s s SoundManager {
6
7 p r i v a t e s t a t i c HashMap<I n t e g e r ,

I n t e g e r > mSoundPoolMap ;
8 . . .
9 p u b l i c s t a t i c void i n i t S o u n d s (Context

theContext)
10 {
11 . . .
12 mSoundPoolMap = new HashMap<

I n t e g e r , I n t e g e r >() ;
13 . . .
14 }
15 }

1 package com . glTron . Sound ;
2
3 import android . u t i l . ArrayMap ;
4 . . .
5 p u b l i c c l a s s SoundManager {
6
7 p r i v a t e s t a t i c ArrayMap<I n t e g e r ,

I n t e g e r > mSoundPoolMap ;
8 . . .
9 p u b l i c s t a t i c void i n i t S o u n d s (Context

theContext)
10 {
11 . . .
12 mSoundPoolMap = new ArrayMap<

I n t e g e r , I n t e g e r >() ;
13 . . .
14 }
15 }

Figure 7.7 Example of replacing HashMap with ArrayMap refactoring. Original code on the
left, and refactored code on the right.

116

Table 7.4 Descriptive statistics showing anti-pattern occurrences in the studied apps.

O.O. AP Android AP

App NOC BL LC LP RB SG BE HMU PGS

Calculator 43 2 3 0 8 5 0 14 0
BlackJackTrainer 13 1 3 0 0 0 0 0 0
GlTron 26 1 3 5 0 0 0 6 1
Kindmind 36 4 0 2 4 0 0 5 0
MatrixCalculator 16 1 0 2 1 2 0 0 0
MonsterHunter 194 11 1 2 32 0 0 3 0
mylocation 9 0 1 0 0 0 1 0 0
OddsCalculator 10 0 6 0 0 0 0 1 0
Prism 17 0 3 0 1 2 0 1 0
Quicksnap 76 3 6 1 1 1 0 10 4
SASAbus 49 0 1 0 0 1 2 7 0
Scrabble 9 0 4 0 0 1 0 2 0
SoundManager 23 0 9 1 0 0 0 6 2
SpeedoMeter 3 0 1 0 0 0 1 0 0
STK 25 0 1 1 0 0 0 4 0
Sudowars 110 26 2 3 21 6 0 9 1
Swjournal 19 0 1 1 0 0 0 0 0
TapsofFire 90 4 5 7 4 1 0 19 1
Vitoshadm 9 0 0 0 1 1 0 0 0
Words 136 10 4 12 6 1 0 15 0
Median 24 1 3 1 1 1 0 4 0
Total 913 63 54 37 79 21 4 102 9

while reducing energy consumption.

(RQ2) What is the precision of the energy improvement reported by EARMO?
This research question aims to examine if the estimated energy improvements reported by
EARMO reflect real measurements.

(RQ3) To what extent is design quality improved by EARMO according to an
external quality model?
While the number of anti-patterns in a system serves as a good estimation of design quality,
there are other quality attributes such as those defined by the QMOOD quality model [40]
that are also relevant for software maintainers, e.g., reusability, understandability and ex-
tendibility. This research question aims to assess the impact of the application of EARMO
on these high-level design quality attributes as we did in previuous chapters.

(RQ4) Can EARMO generate useful refactoring solutions for mobile developers?
This research question aims to assess the quality of the refactoring recommendations made
by EARMO from the point of view of developers. We aim to determine the kind of recom-
mendation that developers find useful and understand why they may chose to discard certain
recommendations.

7.4.3 Evaluation Method

In the following, we describe the approach followed to answer RQ1, RQ2, RQ3 and RQ4.

117

For RQ1, we measure two dependent variables to evaluate the effectiveness of EARMO at
removing anti-patterns in mobile apps while controlling their energy consumption:

— Design Improvement (DI). DI represents the delta of anti-patterns occurrences between
the refactored (a′) and the original app (a) and it was introduced in Chapter 5, Equa-
tion (5.2).

— Estimated energy consumption improvement (EI). EI is computed using the following
formulation.

EI(a) = EC(a′)− EC(a)
EC(a) × 100. (7.5)

Where EC(a) is the energy consumption of an app a and EC(a) ≥ 0. EI captures
the improvement in the energy consumption of an app a after refactoring operation(s).
The sign of EI expresses an increment (+)/decrement (-) and the value represents the
amount in percentage. High negative values are desired.

The independent variables are the three selected EMO metaheuristics, i.e., MOCell, NSGA-
II, and SPEA2. We choose them because they are well-known evolutionary techniques that
have been successfully applied to solve optimization problems, including refactoring [54, 36].
We implement all the metaheuristics used in this study using the jMetal Framework [164],
which is a popular framework for solving optimization problems.

The performance of a metaheuristic can be affected by the correct selection of its parameters.
The configurable settings of the search-based techniques used in this chapter correspond to
stopping criterion, population size, and the probability of the variation operators. We use
number of evaluations as the stopping criteria. As the maximum number of evaluations
increase, the algorithm obtains better quality results on average. The increase in quality is
usually very fast when the maximum number of evaluation is low. That is, the slope of the
curve quality versus maximum number of evaluations is high at the very beginning of the
search. But this slope tends to decrease as the search progresses. Our criterion to decide the
maximum number of evaluations is to select a value for which this slope is low enough. In
our case low enough is when we observe that no more anti-patterns are removed after that
number of evaluations. We empirically tried different number of evaluations in the range of
1000 to 5000 and found 2500 to be the best value.

For selection operator we use the same operator defined by Deb et al. [63] for NSGA-II, and
binary tournament for the other EAs, which are the default operators used in JMetal for
these algorithms.

For population size, we use a default value of 100 individuals; and for the probability of
applying a variation operator we selected the parameters using a factorial design in the

118

following way: we tested 16 combinations of mutation probability pm = (0.2, 0.5, 0.8, 1),
and crossover probability pc = (0.2, 0.5, 0.8, 1), and obtained the best results with the pair
(0.8, 0.8).

The initial size of the refactoring sequence is set to 50% of the size of the total number of
refactoring opportunities, based on our previous findings in Section 4.4.3.

With respect to energy estimation, we show in Table 7.5 the energy consumption coefficient
δEC(k) for each refactoring type, that we use in our experiment. These coefficients were
obtained from the formulation described in Section 7.3.

Note that for the move method refactoring, we did not use the energy consumption measured
for the correction of Blob, as correcting a Blob requires many move methods to be applied.
Hence, we measured the same apps used for Blob (i.e., Swjournal, Quicksnap and Calculator)
with and without moving exactly one method to estimate the effect of this refactoring. The
results, which are not statistically significant, show a decrement in energy consumption.

In order to determine which one of our three EMO algorithms (i.e., MOCell, NSGA-II, and
SPEA2) achieves the best performance, we compute two different performance indicators:
Hypervolume (HV) [166] and SPREAD [63].

We also perform Whitney U Test test pair-wise comparisons between the three algorithms
to validate the results obtained for these two performance indicators.

For RQ2, we perform an energy consumption validation experiment to evaluate the accuracy
of EARMO using our measurement setup described in Section 7.1.1. This is important to
observe how close is the estimated energy improvement (i.e., EI) compared to the real mea-
surements. For each selected app we compute refactoring recommendations using EARMO
and implement the refactorings in the source code of the app. Then, we measure the energy
consumption of the original and refactored versions of the apps using a typical usage scenario,
and compute the difference between the obtained values. We compare the obtained result
with EI.

For RQ3, we use the Quality Model for Object-Oriented Design (QMOOD) [40] to measure
the impact of the refactoring sequences proposed by EARMO, on the design quality of the
apps, as we did in previous chapters.

We compute the quality gain (QG) for each quality attribute using the following formulation.

QG(Ay) = Ay(a′)− Ay(a)
|Ay(a)| × 100 (7.6)

119

Table 7.5 Deltas of energy consumption by refactoring type.
Refactoring Type δEC (ratio)
Collapse hierarchy 0.0056
Inline class -0.0315
Inline private getters and setters -0.0237
Introduce parameter object 0.0047
Move method -0.0020
Move resource request to visible method -0.0412
Replace HashMap with ArrayMap -0.0160
Replace Inheritance with delegation -0.0067

Where Ay(a) is the quality attribute y measurement for an app a, and a′ is the refactored
version of the app a. The sign expresses an increment (+)/decrement (-) and the value rep-
resents the improvement amount in percentage. Note that since the calculation of QMOOD
attributes can lead to negative values in the original design, it is necessary to compute the
absolute value of the divisor.

For RQ4, we conducted a qualitative study with the developers of our studied apps. For
each app, we randomly selected some refactoring operations from the refactoring sequence
recommended by EARMO, and submitted them to the developers of the app for approval or
rejection. We choose three examples for each type of refactoring and for each app.

To measure developers’ taking of the refactorings proposed, we compute for each app the
acceptance ratio, which is the number of refactorings accepted by developers divided by the
total number of refactorings submitted to the developers of the app. We also compute the
overall acceptance ratio for each type of anti-pattern, considering all the apps together.

7.4.4 Results of the Evaluation

In this section we present the answers to our four research questions that aim to evaluate
EARMO.
RQ1: To what extent EARMO can remove anti-patterns while controlling for
energy consumption?
Because the metaheuristic techniques employed in this work are non-deterministic, the results
might vary between different executions. Hence, we run each metaheuristic 30 times, for each
studied app, to provide statistical significance. As a result, we obtain three reference Pareto
front approximations (one per algorithm) for each app. From these fronts, we extract a global
reference front that combines the best results of each metaheuristic for each app and, after
that, dominated solutions are removed.

In Figure 7.8, we present the distribution of DI and EI metric values, for each solution in the
Pareto reference front. Figure 7.8 highlights a median correction of 84% of anti-patterns and

120

estimated energy consumption improvement of 48%. To provide insights on the performance
of EARMO, we present, in Table 7.6, the number of non-dominated solutions found for
each app (column 2), the minimum and maximum values with respect to DI (columns 3-4),
and EI metrics (columns 5-6). The number of non-dominated solutions are the number of
refactorings sequences that achieved a compromise in terms of design quality and energy
consumption. Table 7.6 reports 2.5 solutions on average with a maximum of eight solutions
(words). Thus, for the studied apps, a software maintainer has approximately three different
solutions to choose to improve the design of an app.

In general, we observe that the results for DI and EI metrics are satisfactory, and we find that
in nine apps EARMO reach 100% of anti-patterns correction with a maximum EI of 89%.
With respect to the variability between apps with more than one solution, for EI metrics
the difference between the maximum and minimum value is small, and for DI too, except for
the apps with more than two solutions (i.e., Calculator and Words). We observe that more
than 65% of the apps contain more than one solution. To have an insight on those apps,
we present in Figure 7.9 the Pareto Front (PF) for each app, where each point represents a
solution with their corresponding values, DQ (x-axis) and EC (y-axis). The most attractive
solutions are located in the bottom right of the plot.

According to the concept of dominance, every Pareto point is an equally acceptable solution
of the multiobjective optimization problem [184], but developers might show preference over
the ones that favors the metric they want to prioritize. They could select the refactorings that
improve more the energy consumption (e.g., they can chose to correct more Android anti-
patterns), or apply more OO refactorings to improve the maintainability of their code. Other
developers might be more conservative and select solutions located in the middle of these
two objectives. Developers have the last word, and EARMO supports them by providing
different alternatives.

Impact of refactoring sequences with respect to the type of anti-patterns. The
anti-patterns analyzed in this study affect different quality metrics, and their definitions can
be opposed, e.g., Blob and Lazy class. In Table 7.7, we present the median values of the DI
metric for the non-dominated solutions of each type of anti-pattern. The results fall into two
different categories.

— Medium. Speculative generality and Blob anti-patterns have median correction rates
of 50% and 67%, respectively, while Long parameter list reached 75%.

— High. For the rest of the studied anti-patterns, the median correction rate is 100%, in-
cluding the three Android anti-patterns studied and two OO anti-patterns (i.e., Refused
bequest, Lazy class)

121

DI EI

0
2
0

4
0

6
0

8
0

1
0
0

Performance of the solutions proposed by EARMO

%
Figure 7.8 Distribution of anti-patterns and energy consumption reduction in the studied
apps.

Table 7.6 Minimum and maximum values (%) of DI and EI obtained for each app after
applying EARMO.

Solutions DI EI
App Min. Max. Min. Max.
blackJacktrainer 1 -75 -75 -6.14 -6.14
calculator 5 -75 -93.75 -48.07 -53.55
gltron 2 -93.75 -100 -25.85 -26.32
kindmind 3 -80 -93.33 -18.42 -18.76
matrixcalculator 3 -33.33 -66.67 0.28 -0.67
monsterhunter 2 -81.63 -83.67 -43.95 -44.42
mylocation 1 -100 -100 -2.05 -2.05
oddscalculator 1 -100 -100 -14.64 -14.64
prism 2 -85.71 -100 -7.94 -9.18
quicksnap 2 -92.31 -96.15 -83.65 -84.88
SASAbus 1 -81.82 -81.82 -27.09 -27.09
scrabble 2 -85.71 -100 -12.36 -12.92
soundmanager 2 -94.44 -100 -35.36 -35.83
speedometer 1 -100 -100 -6.17 -6.17
stk 2 -83.33 -100 -11.05 -11.53
sudowars 8 -60.29 -76.47 -48.77 -63.93
swjournal 1 -100 -100 -5.67 -5.67
tapsoffire 3 -82.93 -87.8 -88.26 -89.21
vitoshadm 1 -100 -100 -3.57 -3.57
words 8 -75 -91.67 -56.83 -63.37

�

�

	
We conclude that including energy-consumption as a separate objective when applying au-
tomatic refactoring can reduce the energy consumption of a mobile app, without impacting
the anti-patterns correction performance.

Performance of the metaheuristics employed. As mentioned before, EARMO makes
use of EMO techniques to find optimal refactoring sequences. Therefore, the results can vary
from one technique to another. A software maintainer might be interested in a technique
that provides the best results in terms of diversity of the solutions, and convergence of the
algorithm employed. In the MO research community, the Hypervolume (HV) [166] is a
quality indicator often used for this purpose, and higher values of this metric are desirable.

122

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

STK Sudowars TapsofFire Words

MonsterHunter Quicksnap Scrabble SoundManager

Calculator GlTron Kindmind MatrixCalculator

99
.5

99
.6

99
.7

99
.8

99
.9

10
0.

0

98
.2

98
.4

98
.6

98
.8

99
.0

99
.1

99
.2

99
.3

99
.0

99
.2

99
.4

99
.6

99
.5

6

99
.5

8

99
.6

0

99
.7

0

99
.7

5

99
.8

0

99
.0

99
.5

10
0.

0

99
.6

99
.8

10
0.

0

98
.0

98
.5

99
.0

99
.5

99
.5

99
.6

99
.7

99
.8

99
.9

10
0.

0

99
.1

99
.3

99
.5

97
.0

97
.5

98
.0

98
.5

9.800

9.825

9.850

9.875

9.900

2.000

2.025

2.050

2.075

2.100

20

21

22

23

11.400

11.425

11.450

11.475

11.500

118.6

118.8

119.0

119.2

1.300

1.325

1.350

1.375

1.400

229.6

230.0

230.4

9.2

9.4

9.6

9.8

7.0

7.5

8.0

8.5

9.0

9.5

15.5

16.0

16.5

17.0

13.800

13.825

13.850

13.875

13.900

289.5

290.0

290.5

291.0

Design Quality (DQ) %

E
ne

rg
y

C
on

su
m

pt
io

n
(E

C
) J

ou
le

s

Figure 7.9 Pareto front of apps with more than one non-dominated solution.

Table 7.7 Median values of anti-patterns corrected by type (%).

O.O. anti-patterns Android anti-patterns

App BL LC LP RB SG BE HMU PGS

blackjacktrainer 0 -100 NA NA NA NA NA NA
calculator -100 -100 NA -75 -60 NA NA -100
gltron -100 -100 -90 NA NA NA -100 -100
kindmind -100 NA -50 -100 NA NA NA -100
matrixcalculator 0 NA -50 -100 -50 NA NA NA
monsterhunter -27.27 -100 -75 -100 NA NA NA -100
mylocation NA -100 NA NA NA -100 NA NA
oddscalculator NA -100 NA NA NA NA NA -100
prism NA -100 NA -100 -75 NA NA -100
quicksnap -66.67 -100 -100 -100 -50 NA -100 -100
SASAbus NA -100 NA NA 0 -100 NA -100
scrabble NA -100 NA NA -50 NA NA -100
soundmanager NA -100 -50 NA NA NA -100 -100
speedometer NA -100 NA NA NA -100 NA NA
stk NA -100 -50 NA NA NA NA -100
sudowars -59.62 -100 -66.67 -80.95 -66.67 NA -100 -94.44
swjournal NA -100 -100 NA NA NA NA NA
tapsoffire -75 -40 -85.71 -100 0 NA -100 -100
vitoshadm NA NA NA -100 -100 NA NA NA
words -85 -100 -91.67 -33.33 50 NA NA -100

123

In Table 7.8 we present the median and interquartile range (IQR) of the HV indicator for each
metaheuristic and for each app with more than one solution. A special notation has been used
in this table: a dark gray colored background denotes the best technique while lighter gray
represents the second-best performing technique. For the apps with more than two solutions
we observe a draw in Matrixcalculator, while MOCell outperforms the other algorithms in
two apps. SPEA2 outperforms the rest in Sudowars, and gets second best in two more apps.
NSGA-II obtains second-best in Sudowars. In the cases where the metaheuristics cannot find
more than one optimal solution, the value of HV is zero. Hence, the outperforming technique
according to this quality indicator remains unknown.

Another quality indicator often used is the Spread [63]. It measures the distribution of
solutions into a given front. Low values close to zero are desirable as they indicate that the
solutions are uniformly distributed. In Table 7.9 we present the median and IQR results of
the Spread indicator. We observe that MOCell outperforms the other techniques in 92% (12
apps) of cases, while soundmanager reports the same value for the three EMOs. SPEA2 gets
the second best in 69% (nine apps), and NSGAII only in 8% (three apps).

To validate the results obtained by the HV and the Spread indicators, we perform pair-
wise comparisons between the three metaheuristics studied, using Whitney U Test, with a
confidence level of 95%. The results of these tests are summarized in Table 7.10. We use the
same notation and symbols introduced in chapter 6.

Concerning HV indicator, only one app (sudowars) was statistically significant in the pair
MOCell-NSGAII favoring the former one. So we can conclude that in general the performance
of the three algorithms is similar. With respect to the Spread indicator, MOCell outperforms
SPEA2 in seven apps, and NSGA-II in 10. In the pair NSGA-II-SPEA2, there is one app
(Matrixcalculator) where NSGA-II outperforms SPEA2. Hence, the solutions obtained by
MOCell are better spread through the entire Pareto front than the other algorithms. Regard-
ing execution time, we did not observed a significant difference between the execution time
of the studied metaheuristics. According to the Whitney U Test test, MOCell is the best
performing technique with respect to solution diversity, while regarding HV the performance
of the three EMO algorithms is similar. Developers and software maintainers should consider
using MOCell when applying EARMO.

RQ2: What is the precision of the energy improvement reported by EARMO?
The output of EARMO is a sequence of refactorings that balances anti-pattern correction
and energy consumption. Developers select from the Pareto front, the solutions that best fits
their needs. To validate the estimations of EARMO, we play the role of a software maintainer
who wants to prioritize the energy consumption of his/her app over design quality.

124

Table 7.8 Hypervolume. Median and IQR.
MOCell NSGAII SPEA2

calculator 1.32e− 18.3e−2 8.92e− 021.3e−1 9.47e− 21.8e−1
gltron 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0
kindmind 0.00e+ 01.0e−1 0.00e+ 00.0e+0 0.00e+ 00.0e+0
matrixcalculator 2.50e− 10.0e+0 2.50e− 10.0e+0 2.50e− 10.0e+0
monsterhunter 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0
prism 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0
quicksnap 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0
scrabble 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0
soundmanager 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0
stk 0.00e+ 00.0e+0 0.00e+ 00.0e+0 0.00e+ 00.0e+0
sudowars 4.25e− 11.3e−1 4.95e− 11.2e−1 5.45e− 11.2e−1
tapsoffire 0.00e+ 00.0e+0 0.00e+ 03.7e−2 0.00e+ 03.7e−2
words 3.00e− 15.3e−2 2.69e− 17.3e−2 2.73e− 17.0e−2

Table 7.9 Spread. Median and IQR.
MOCell NSGAII SPEA2

calculator 6.89e− 13.0e−1 1.12e+ 04.7e−1 8.73e− 15.6e−1
gltron 6.78e− 11.8e−1 1.07e+ 01.8e−1 1.08e+ 02.7e−1
kindmind 6.93e− 11.0e−1 9.71e− 12.2e−1 7.66e− 13.0e−1
matrixcalculator 5.00e− 10.0e+0 1.39e+ 00.0e+0 1.49e+ 03.5e−3
monsterhunter 8.97e− 14.3e−1 9.70e− 12.1e−1 9.27e− 11.1e−1
prism 0.00e+ 00.0e+0 1.94e+ 03.8e−2 1.92e+ 04.6e−2
quickSnap 1.95e− 14.1e−1 1.29e+ 06.0e−1 1.00e+ 01.4e+0
scrabble 5.00e− 11.0e+0 1.50e+ 03.8e−1 1.62e+ 07.8e−1
soundmanager 1.00e+ 01.7e−1 1.00e+ 00.0e+0 1.00e+ 00.0e+0
stk 0.00e+ 00.0e+0 1.95e+ 02.9e−02 1.91e+ 01.5e−1
sudowars 7.96e− 11.3e−1 8.53e− 11.4e−1 8.41e− 11.3e−1
tapsoffire 7.53e− 15.4e−1 1.00e+ 01.7e−1 1.00e+ 08.6e−2
words 6.84e− 12.5e−1 9.42e− 12.2e−1 7.07e− 11.6e−1

Table 7.10 Pair-wise Whitney U Test test for HV and Spread indicators.
EMO Pair Quality Indicator N O –

MOCell, SPEA2 HV 0 0 13
Spread 7 0 6

MOCell, NSGA-II HV 0 1 12
Spread 10 0 3

NSGA-II, SPEA2 HV 0 0 13
Spread 1 0 12

The process of validation consists in manually applying the sequence of refactorings to their
corresponding source code, for each of the studied apps. We ran the scenario after applying
each sequence to ensure that we are not introducing code regression. Finally, we compile and
generate the APK file to deploy it in the mobile device and measure their energy consumption
using our experimental setting described in Section 7.2. With this EC validation, we want
to estimate EARMO’s median error with respect to real measurements.

Concerning the scenarios used for EC validation, we defined new ones for the apps where we
consider that the scenario used in the preliminary study do not reflect a typical usage. The
reason is that in the preliminary study we were only interested in executing the code segment

125

related to an anti-pattern instance in the original version and its corresponding refactored
code segment. The scenarios of Table 7.2 were just designed to check if a correlation exists
between energy consumption and anti-pattern occurrences. Some scenarios designed for the
preliminary study just required to start the app, wait certain seconds, and close it to execute
the refactored code segment. For the EC validation we want to reflect the actions that a
user typically will perform with an app, according the purpose of their creators, instead of
scenarios designed to maximize other metrics like coverage which do not reflect the daily use
of normal users. To validate EARMO (and perform optimization) we replace the scenarios
in Table 7.2, i.e., the ones that only load and close an app, by the ones presented in Table 7.11.
Note that in some cases we have to modify the code to remove any sources of randomness
that may alter the execution path between different runs. For example, Sudowars is a sudoku
game where the board is randomly generated. Because in the scenario we introduce fixed
numbers in fixed positions of the board, we need to ensure that the same board is always
displayed to produce the same execution path over the 30 independent runs. Hence, we fixed
the random seed used in the app to force to display always the same board. A similar case
happens to another board game (scrabble).

Table 7.11 Description of scenarios generated for the EC validation and duration (in seconds).

App Scenario Duration
Calculator Same scenario as preliminary study. 17.94
GLTron Tap screen to start the game and wait until the moto crashes. 40.08
kindmind Select each category, wait for the relaxation message, and close

app.
80.06

monsterhunter Same scenario as preliminary study. 16.39
oddscalculator Select two players, {7 heart}, {8 heart}, {9 heart}, tap

{calculate}, wait five seconds, and close app.
45.83

quicksnap Take a picture and close app. 16.30
SASAbus Same scenario as preliminary study. 71.72
scrabble Assign the first four letters to the first cells, tap {confirm}, and

close app.
65.11

soundmanager Same scenario as preliminary study. 18.74
stk Wait until content is downloaded, tap {karts}, tap first row,

back, back, tap { tracks}, tap first row, and close app.
86.55

sudowars Wait until app is loaded, tap {manual}, tap { single player}, tap
{ tick} button, select first square and write values 1, 2, 3, 4, 5,
and 6, tap {...}, tap {assistant}, give up, tap yes, tap back, close
app.

53.13

tapsoffire Same scenario as preliminary study. 25.96
words Select a category, tap {play}, tap {flash card}, tap {green

hand}, tap {flash card}, tap { red hand}, tap {back}, and close
app.

57.34

For the manual application of the sequence of refactorings, two Ph.D. candidates with more
than 5 years of experience in Java, and a MSc. Student with two years of programming

126

experience, worked together. After each team member finished to apply a refactoring se-
quence to an app, we shared the control version repository with the other team members for
approval. In case of disagreement, we vote for either apply or exclude a refactoring opera-
tion(s) from a sequence. Additionally, whenever we observed an abnormal behavior in the
app after applying a refactoring, we rolled back to the previous code version and discarded
the conflicting refactoring. We provide a link to the git repositories containing the refactored
versions available online at http://swat.polymtl.ca/rmorales/EARMO/.

It is important to mention that we applied the refactorings using the Android Studio tool
support, and we do not find cases where refactorings violate any semantic pre- and post-
condition. However, there are many cases, specially in move method refactoring, and in
replace inheritance with delegation, where it is possible to introduce regression despite the
fact that the refactoring is semantically correct. Due to the absence of a test suite, we execute
the defined scenario on the phone after applying each refactoring, to validate the correct
execution of it. This is crucial, because an app could be executed even if the refactoring
applied introduces regression until we exercise the functionality related to the code fragment
touched by the refactoring. When we notice that the refactoring is not exercised in the
defined scenario, we separately test that functionality.

In Table 7.12 we present the results of the manual refactoring application. The column
Discarded ref. is the number of refactorings discarded from the sequence; Applied ref. the
refactorings applied, and Total is the sum of both columns. Precision is the ratio of refac-
torings generated over the valid refactorings. Overall, EARMO shows a good precision score
(68%) for all apps. In fact, only in 20% of the apps, the precision is less than 50%. From
these apps, we discuss Prism, which is the app with lowest precision score. We found one out
of five refactorings to be valid, and that one is the IGS type; three refactorings attempt to
inline autogenerated classes from Android build system (e.g., R, BuildConfig); one attempts
to inline a class that extends from android.app.Activity class which is not invalid. From
the four refactorings discarded of Prism, three can be consider valid but useless, and only one
will introduce regression. Later, we provide guidelines for toolsmiths interested in developing
refactoring tools for Android. With respect to the total number of refactorings applied, we
observe that in seven cases we apply more than 20 refactorings, and from this subset two
of them require more than 100. This validate our idea, that an automated approach can
be useful for developers and software maintainers interested in improving the design of their
apps, but with limited budget time to perform a dedicated refactoring session for all classes
existing in their app.

In Table 7.13 we present EARMO median execution time Exec.T ime, estimation values

http://swat.polymtl.ca/rmorales/EARMO/

127

Table 7.12 Summary of manual refactoring application for the EC validation.
App DI% EI% Discarded ref. Applied ref. Total Precision (%)
Calculator 75 54 19 45 64 70
BlackJackTrainer 75 6 3 1 4 25
GlTron 94 26 19 13 32 41
Kindmind 80 19 7 23 30 77
MatrixCalculator 33 1 0 1 1 100
MonsterHunter 82 44 29 83 112 74
mylocation 100 2 1 1 2 50
OddsCalculator 100 15 0 6 6 100
Prism 86 9 4 1 5 20
Quicksnap 92 85 69 119 188 63
SASAbus 82 27 3 8 11 73
Scrabble 86 13 0 6 6 100
SoundManager 94 36 3 5 8 63
SpeedoMeter 100 6 1 1 2 50
STK 83 12 2 3 5 60
Sudowars 71 64 38 75 113 66
Swjournal 100 6 13 6 19 32
TapsofFire 83 89 21 139 160 89
Vitoshadm 100 4 0 2 2 100
Words 75 63 23 76 99 77

Total 614 Median 68

of energy consumption EC, median energy consumption of an app before (E0) and after
(E ′) refactoring. The difference between EC and E ′, γ(EC,E ′) is calculated by subtracting
EC − E ′ and dividing the result by E ′ and the result is multiplied by 100. Similarly, we
calculate the difference between E ′ and E0, γ(E ′, E0). From the statistical tests between E0,
E ′, the p−value, and effect size (ES). The last column is the median difference of battery life
duration, in minutes, between the original and the refactored version (Diff.Batterylife).
This is of special interest for software maintainers to assess if the impact of applying a
refactoring sequence would be noticeable to end users. We provide details of how to compute
the last column below. This procedure has been used in previous works [185].

For each app we calculate its battery usage (in %) using Equation 7.7 to estimate the percent-
age of battery charge that is consumed by an app when running the defined scenario. E is
the energy consumption in Joules of an app (derived from the median of the 30 independent
runs), and V and C are the voltage and electric charge (in mAh), respectively, of the phone
battery. For Nexus 4, V = 3.8 and C = 2100mAh.

Batteryusage = E

V
× 1000
C × 3600 × 100 (7.7)

After obtaining the battery usage for both versions (original, and refactored) of each app, we
use it to compute the battery life (in hours) using Equation 7.8 where ET is the execution
time of the app (in seconds). We consider the battery life of an app to be the time that it
takes to drain the battery if the scenario associated to the app is continuously run.

128

Batterylife = (ET × 100)/Batteryusage
3600 (7.8)

Finally, we calculate the average battery life for each app (original and refactored) and
subtracted these values to obtain the difference of battery life (Diff.Batterylife). Positive
values are desired, as they mean that the battery life is longer using the refactored version,
while negatives values mean the opposite effect.

Note that we did not consider apps in the validation where the number of refactorings applied
is one, that accounts for six apps. The reason is that for these apps the energy improvement
estimation EI is inferior to 10% before the manual application of refactorings, so we do not
expect a measurable energy consumption change. In addition, we also omit Swjournal, in
which we applied six refactorings out of 13, but given its low EI of 6% it is unlikely to report
a noticeable change either.

For the remaining 13 apps, we observe that the median execution time for generating the
refactoring sequences is less than a minute (56 seconds). Concerning energy estimation (EC),
the direction of the trend holds for all the apps in the testbed according to the results mea-
sured E ′. Concerning the accuracy of the estimation, EARMO values are more optimistic
than the actual measurements but in an acceptable level. There are some remarkable excep-
tions, like Tapsoffire where the difference is 50%. In this app, most of the refactorings are
move method type (120). If we multiply 120 by E0, and the result by δEC(movemethod)
we have an energy consumption decrease of -1.64 J ; 12 refactorings of inline private getter
and setters type that account for -1.92 J . These two refactorings consume in total 3.56 J .
The rest of the energy is divided between six IPO and one replace HashMap with ArrayMap.
However, the impact on energy for this app is far from this value, probably because the
scenario does not exercise (enough) the code that is modified by the refactorings to report a
considerable gain. On the other side, STK reports the most close prediction with a differ-
ence of 3%. The refactorings applied are three inline getter and setters. If we compare the
results obtained by EARMO compared with the preliminary study, the energy consumption
trend holds for all the apps. However it is hard to make a fair comparison because in the
Preliminary study we measure the effect of one instance of each anti-pattern type at a time,
but in the energy consumption validation of EARMO we apply few to several refactorings.
Although we assume that the effect of refactoring is aggregated, it is difficult to prove it with
high precision, since we could not exercise all possible paths related to the refactored code in
the proposed scenarios. Yet, the median error of γ(EC,E ′) is in acceptable level of 12%, like
the one reported by Wan et al. [126], when estimating the energy consumption of graphic
user interfaces in a testbed of 10 apps.

129

Concerning the difference in energy consumption after refactoring, we observe that for three
apps we obtain statistical significant results, with large effect size (results are in bold). This
corroborates the findings in the preliminary study, for these apps. Although, for the rest
of the apps the results are not statistically significant, we still we believe that the results
are sound with respect to the energy consumption improvements reported. A recent work
by Banerjee reported an energy consumption improvement from 3% to 29% in a testbed of
10 F-Droid apps with an automated refactoring approach for correcting violations of the
use of energy-intensive hardware components [186]. With respect to battery life, EARMO
could extend the duration (for the apps where the difference is statistically significant) of
the battery from a few minutes up to 29 minutes (see the remarkable increment reported for
Words). Note that to obtain a similar outcome in battery life, the proposed scenarios should
be executed continuously, draining the battery from full to empty, which is not impossible,
but rather unlikely. Yet, the benefits of improving design quality of the code, and potentially
reducing the energy consumption of an app should not be underestimated. Not only because
battery life is one of the main concerns of Android users and every small action performed to
keep a moderate energy usage in apps is well appreciated. But, even if there is not a noticeable
gain in energy reduction, software maintainers are safe to apply refactoring recommendations
proposed by EARMO without fearing to introduce energy leaks.

Guidelines for toolsmiths designing refactoring recommendation tools.

We discuss some issues that should be considered for toolsmiths interested in designing refac-
toring recommendation tools for Android based on our experience applying the suggestions
generated by EARMO. We should note that the tool that we use for detecting anti-patterns,
which is DECOR, is not developed for Android platform. Hence, it does not consider the
control flow depicted in Figure 7.3 and the OS mechanisms of communication between apps.
This could generate false positives and consequently impact the generation of refactoring
opportunities. Toolsmiths interested to develop refactoring tools for mobile platforms, based
on anti-pattern detection tools aimed to target OO, should adapt the detection heuristics
to avoid generating invalid refactoring operations. We discuss some strategies to consider
below.

Excluding classes autogenerated by android build system. The classes <app package>.R, and
<app package>.BuildConfig should not be considered for analysis of anti-patterns as they
are automatically generated when (re)building an app .
Classes extending classes from android.content package and its corresponding subpackages.
This package provides classes for accessing and publishing data on a mobile device and
messaging between apps. As an example, consider android.content.BroadcastReceiver,

130

Table 7.13 EARMO execution time (seconds), EC estimation (J), median energy consump-
tion E0 and E ′ (J), γ values, statistical tests, and difference in battery life (minutes).

App Exec.T ime EC E0 E′ γ(EC,E′) γ(E′, E0) p− value ES Diff.Batterylife
calculator 154.90 17.40 21.28 19.49 -11% -8% 1.86E-09 -0.94 2.55
gltron 55.98 242.27 256.44 252.15 -4% -2% 8.01E-08 -0.77 0.42
kindmind 34.59 17.10 18.72 18.9 -10% 1% 0.1294 0.21 -4.61
monsterhunter 237.10 13.63 16.07 16.05 -15% 0% 0.6263 -0.03 -0.82
oddscalculator 8.98 29.25 30.61 30.94 -5% 1% 0.1094 0.22 -2.06
quicksnap 418.82 11.52 15.33 15.29 -25% 0% 0.9193 -0.04 3.33
SASAbus 32.39 3.79 4.61 5.49 -31% 19% 0.7922 0.09 -2.03
scrabble 18.55 88.68 94.56 94.14 -6% 0% 0.9193 -0.03 2.45
soundmanager 25.70 1.75 1.96 2.00 -13% 2% 0.3492 0.16 1.88
stk 24.58 240.82 252.81 249.29 -3% -1% 0.1403 -0.16 0.99
sudowars 203.60 46.21 54.27 53.99 -14% -1% 0.0879 -0.20 1.07
tapsoffire 281.00 3.30 6.80 6.59 -50% -3% 0.9354 -0.02 1.97
words 119.65 25.16 27.01 25.13 0% -7% 0.0384 -0.27 29.71

which allows an app to receive notifications from relevant events beyond the app’s flow, e.g.,
a user activating the airplane mode. An app can receive broadcasts in two different ways.
(1) declaring a broadcast receiver in the app’s manifest; (2) creating an instance of class
BroadcastReceiver, and register within a context [187]. We focus in the first method, as
is the one that could lead developers to introduce regression (even using IDE’s refactoring
tool support). In manifest-declared receivers, the receiver element is registered in the app’s
manifest, and a new class is extended from BroadcastReceiver which requires to imple-
ment onReceive(context, Intent) method, to receive the contents of the broadcast. Let
us briefly discuss the main issue when generating refactoring opportunities for classes ex-
tending from android.content packages (in this example we focus in BroadcastReceiver)
depending on the type of refactoring to be applied. Collapse hierarchy refactoring is not
considered as BroadcastReceiver does not belong to the app’s package. Replace inher-
itance with delegation will introduce regression when removing the hierarchy relationship
with BroadcastReceiver. We observe the same issue with inline class when trying to move
the methods and attributes to other potential class. Move method will introduce regression
too, when trying to move inherited methods like onReceive to another class.

Collapsing hierarchy of classes registered as Android activity. When a refactoring operation
consists of applying Collapse hierarchy refactoring to a class that extends from Activity, it
is also necessary to update the app’s manifest with the name of the parent class.

Replacing Hashmap with ArrayMap. It is necessary to replace the imports for android.support.
v4.util when Android API is less than 19, or android.util otherwise. It is important to
mention that ArrayMap is defined as final, so it limits the possibility to derive a new imple-
mentation from this class, contrary to HashMap and its derived classes (e.g., LinkedHashMap).

131

RQ3: To what extent is design quality improved by EARMO according to an
external quality model?
In RQ1, we have shown that EARMO is able to find optimal refactoring sequences to correct
anti-patterns while controlling for energy consumption. Although anti-patterns occurrences
are good indicators of design quality, a software maintainer might be interested in knowing
whether the applied refactorings produce code that is for example readable, easy to modify
and–or extend. To verify such high-level design quality attributes, we rely on the QMOOD
quality model. Table 7.14 presents the maximum and minimum quality gain achieved after
applying the refactorings suggested by EARMO, for each app studied and for each QMOOD
quality attribute.

— Reusability, understandability and flexibility. In general, the refactored apps report a
slight decrease that ranges from 0.9% to 4% for these attributes. In the case of reusabil-
ity, the prism app is an outlier, with a medium deterioration of reusability between 31%
and 44%. EARMO finds two refactoring sequences (or two non-dominated solutions in
the Pareto front) that are comprised of five refactoring operations. These refactorings
are three inline operations, which have negatively impacted the reusability value be-
cause of the weight (i.e., 0.5) that reusability assigns to the number of entities in the
system (DSC metric). The fourth refactoring is Inline private getters and setters, which
negatively affects the cohesion among methods (CAM) because one getter is inlined in
the system. The last refactoring of the first refactoring sequence is replace inheritance
with delegation which negatively impacts the coupling between classes (DCC), leading
to a drop of 44.36% (minimum value) of reusability. In the second refactoring sequence,
the last refactoring is collapse hierarchy which negatively impact DSC metric as well.
Concerning understandability, we observe little variation through all the apps, making
it the least impacted attribute among the five attributes studied. Finally, for flexibility
we report a median of -4.07%. One remarkable case is Mylocation, with 100% gain
for this attribute. It has one solution comprised of two refactorings, inline class and
move resource request to visible method. While the former one does not have a direct
impact on the design, the inline of a class positively impacted this attribute because
the number of classes is small (only nine classes). Similarly, Oddscalculator contains
one solution with seven inline class refactorings, and one inline private getter. On the
other hand, Swjournal has one solution composed mainly by move method refactorings
(19), and one inline class. The inline class operation is likely responsible for the drop
of the value of the attribute to 45%.

— Effectiveness. We report a small gain of 3.14%, with two outliers (Oddscalculator and
Soundmanager). As we discussed before, Oddscalculator is mainly composed of inline

132

Table 7.14 Quality gain achieved by EARMO on QMOOD quality attributes.
Reu. Und. Fle. Eff. Ext.

App Name Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
blackjacktrainer -3.96 -3.96 -4.05 -4.05 -11.13 -11.13 9.29 9.29 94.86 94.86
calculator -1.06 -0.58 -1.00 0.11 -14.52 6.73 1.85 3.18 13.51 21.07
gltron -8.19 -2.83 -4.25 -2.39 -10.54 -4.93 3.79 6.12 38.01 40.79
kindmind -1.10 -0.67 0.87 0.93 -0.12 1.78 -0.25 0.36 58.08 58.62
matrixcalculator 0.00 2.16 0.05 0.33 0.34 35.64 -0.51 -0.25 89.87 100.36
monsterhunter 0.08 0.10 0.00 0.10 0.43 0.73 0.42 0.48 57.22 57.69
mylocation -1.56 -1.56 1.49 1.49 100.00 100.00 7.39 7.39 1.25 1.25
oddscalculator -5.31 -5.31 -5.28 -5.28 70.86 70.86 28.93 28.93 42.15 42.15
prism -44.36 -31.27 -8.14 -6.10 -14.46 -10.60 7.53 10.22 65.17 78.30
quicksnap -2.74 -2.72 -3.77 -3.51 -39.15 -37.23 1.89 2.25 4.15 4.91
sasabus -0.24 -0.24 -0.07 -0.07 -0.41 -0.41 1.11 1.11 64.57 64.57
scrabble -8.41 -7.30 -0.80 -0.05 -13.41 -10.20 9.79 12.77 -1.67 1.60
soundmanager -7.39 -5.67 -5.02 -3.40 -14.65 -5.92 24.11 26.17 32.32 44.32
speedometer -0.93 -0.93 -1.22 -1.22 55.56 55.56 9.72 9.72 -124.16 -124.16
stk -0.01 0.53 0.18 0.34 1.21 3.74 1.35 1.35 55.05 55.96
sudowars -2.71 -0.76 -2.10 -1.12 -12.42 -5.43 -0.94 0.24 25.16 30.52
swjournal -4.14 -4.14 -2.45 -2.45 -45.33 -45.33 0.87 0.87 6.88 6.88
tapsoffire -0.39 -0.07 -2.97 -2.90 -13.36 -12.24 4.87 4.98 18.38 19.13
vitoshadm -0.21 -0.21 0.10 0.10 8.71 8.71 3.79 3.79 153.06 153.06
words 2.11 3.92 0.44 0.81 4.19 8.11 -6.27 -3.70 72.88 74.27
Median values for all
PF solutions

-1.24 -0.94 -4.07 3.14 40.78

class refactorings. Soundmanager has two solutions, both contain nine inline classes,
six inline getters/setters, and two replace HashMap usage operations. In addition, the
second solution includes introduce parameter-object refactoring, which adds a new class
to the design, has the highest effectiveness value for this app.

— Extendibility. For this attribute we report a considerable improvement of 41%. We at-
tribute this increment to the removal of unnecessary inheritance (through inline class,
collapse hierarchy and replace inheritance with delegation refactorings). In fact, the
extendibility function assigns a high weight to metrics related to hierarchy (i.e., MFA,
ANA). These are good news for developers interested in improving the design of their
apps through refactoring, as the highly-competitive market of Android apps requires
adding new features often and in short periods of time. Hence, if they interleave refac-
toring before the release of a new version, it will be easier to extend the functionality
of their apps.

�
�

�
�

We conclude that our proposed approach EARMO can improve the design quality of an app,
not only in terms of anti-patterns correction, but also their extendibility, and effectiveness.

RQ4: Can EARMO generate useful refactoring solutions for mobile developers?
We conducted a qualitative study with the developers of the 20 apps studied in this chapter
to gather their opinion about the refactoring recommendations of EARMO. The study took

133

place between August 17th and September 17th 2016. 23 developers, identified as authors
in the repository of the apps, were contacted but only 8 responded providing feedback for
a total of 8 apps. Table 7.15 provides some background information on the developers that
took part in our qualitative study. Each developer has more than 3 years of experience and
their primary programming language is Java. Half of the developers use Android Studio to
program. 100% of them considered refactorings to be useful but only 12% said that they
perform refactoring frequently. We asked each developer to name the three refactorings
that they perform the most. As we can see in Table 7.15, the most frequent refactorings
performed by the developers are: to remove dead code, move method, inline class, extract
class/superclass, collapse hierarchy, and extract interface. They also mentioned to extract
repetitive code into new functions (extract method), and adjusting data structures.

Table 7.15 Background information on the surveyed developers.
App
Name

Interval
Age

Experience Prog.
Lan-
guage

IDE Top refactorings

Calculator 18 to 24 5-9 years Java Android
Studio

Extract method, remove dead code, extract or remove
new class/interface

OddsCalc 35 to 44 3-4 years Java Eclipse Move type to new file, move method/field.
Kindmind 25 to 34 <1 year Java Android

Studio
Renaming variables and classes, extract method/class

GLTron 35 to 44 3-4 years Swift XCode Adjusting data structures, move method, extract class/-
superclass, Inline class, Collapse hierarchy and extract
interface

Scrabble 35 to 44 3-4 years python vim Extract method, remove dead code, add encapsulation
Prism 45 to 54 10 years or

more
Java Eclipse Extract variable, extract method, rename

Matrixcalc 18 to 24 3-4 years Java Android
Studio

Refactoring duplicate code, renaming classes/methods
and variables, remove dead code

STK 18 to 24 1-2 years Java Android
Studio

Extract method, extract class

For each app, we randomly selected three refactorings for each refactoring type, from the
refactoring sequence in the Pareto front with the highest energy gain. We submitted the
proposed refactorings to the developers of the app. We asked the developers if they accept
the solution proposed by EARMO, and if not, to explain why. We also asked if there were
any modification(s) that they would like to suggest to improve the proposed refactoring
recommendations. In Figure 7.10, we present the acceptance ratio of the refactoring solutions
proposed by EARMO, by app (left), and by anti-pattern (right).

We can observe that for four apps (prism, scrabble, stk, matrixcalculator), 100% of the
refactorings suggested by EARMO were accepted. For three other apps (calculator, kindmind,
oddscalculator) the acceptance ratio range from 40% to 57%. The developer of the GLTron
app rejected all the refactorings recommended for the app. However, some of the reasons
behind her/his rejections are not convincing as we will discuss in the following paragraph.

134

Calculator

GLTron

KindMind

MatrixCalc

OddsCalc

Prism Scrabble STK

0

25

50

75

100

A
cc

ep
ta

nc
e

R
at

io
 (%

)

factor(APP)
Calculator

GLTron

KindMind

MatrixCalc

OddsCalc

Prism

Scrabble

STK

CH IC

IGS

IPO

MM

RHA
0

25

50

75

A
cc

ep
ta

nc
e

R
at

io
 (

%
)

factor(Refactoring)
CH

IC

IGS

IPO

MM

RHA

Figure 7.10 Acceptance ratio of the refactorings proposed by EARMO.

Overall, 68% of recommendations suggested by EARMO were accepted by developers.

The refactoring with the highest acceptance ratio is inline private getters and setters, while
the one with the lowest acceptance ratio is replace HashMap with ArrayMap. The only app
for which replace HashMap with ArrayMap was recommended is GLTron. The argument
provided by the developer of GLTron to justify his disapproval of the refactoring is that be-
cause “GLtron runs on many platforms, introducing too many Android specific APIs would
be a bad idea from a portability point of view”. He also mentioned that because the HashMap
contains few objects, the impact on performance is minimal. However, the Android docu-
mentation [50] emphasizes the advantages of using ArrayMap when the number of elements
is small, in the order of three digits or less. In addition to this, the performance in energy
consumption should not be ignored.

Move method refactoring has an acceptance rate of 25%. The following reasons were
provided by developers to justify their decision to reject some move method refactorings
suggested by EARMO. For the calculator app, the developer rejected two suggested move
method refactorings, arguing that the candidate methods’ concerns do not belong to the
suggested target classes. However, s/he agrees that the source classes are Blobs classes that
should be refactored. We obtained a similar answer from the developer of Kindmind, who
also agrees that the classes identified by EARMO are instances of Blob, but proposes other
target classes as well. To justify her/his rejection of all the three move method refactorings
that were suggested for her/his app, the developer of GLTron argued that there are more
important issues than moving a single method. However, (s)he didn’t indicate what were
those issues.

Introduce parameter object. We found long-parameter list instances in matrixcalculator,

135

STK and GLTron, and its only in GLTron that the developer rejected the two refactorings
proposed, claiming that the new object will bloat the calling code of the method; and for the
second one, that the method has been already refactored in a different way.

Collapse hierarchy. We found two instances of speculative generality, one in Prism (which
was accepted) and another in Calculator ; the latter one was rejected because the collapsed
class (which is empty) implements a functionality in the paid version. The developer wanted
to keep the empty class to maintain compatibility between the two versions of the app (i.e.,
free and paid versions). However, the developer agrees that the solution proposed by EARMO
is correct, and will consider to remove the empty class in the future.

Inline class. Two inline class refactorings were proposed by EARMO, one in Scrabble and
another in Oddscalculator. The former one was rejected by the developer because (s)he
considers that inlining the lazy class will change the idea of the design.

Inline private getters and setters. EARMO recommended Inline private getters and
setters refactorings in 7 out of the 8 apps for which we received developers’ feedback. From a
total of 11 Inline private getters and setters operations that were suggested by EARMO, only
one was rejected, and this was in GLTron. The developer of GLTron argued that a method
that is called only once require no performance optimizations.

The majority of recommendations made by EARMO were received favorably. For those that
were rejected, it was not because they were incorrect or invalid, but because they affected
certain aspects of the design of the apps that developers did not wanted to change. The
recommendations made by EARMO raised the awareness of developers about flaws in the
design of their apps. This was true even when the suggested fixes (i.e., the refactorings) for
these design flaws were rejected by the developers.

�

�

�

Hence, we conclude that EARMO recommendations are useful for developers. We rec-
ommend that developers use EARMO during the development of their apps, since it can
help them uncover design flaws in their apps, and improve the design quality and energy
consumption of their apps.

7.5 Threats to validity

This section discusses the threats to validity of this chapter’s case studies following common
guidelines for empirical studies [143].

Construct validity threats concern the relation between theory and observation. This is mainly

136

due to possible mistakes in the detection of anti-patterns, when applying refactorings. We
detected anti-patterns using DECOR [52] and the guidelines proposed by Gottschalk and
the Android performance tips [48, 51]. However, we cannot guarantee that we detected
all anti-patterns, or that all those detected are indeed true anti-patterns. Concerning the
application of refactorings, for the preliminary study, we use the refactoring tool support of
Android Studio and Eclipse, to minimize human mistakes. In addition, we verify the correct
execution of the proposed scenarios and inspect the ADB Monitor to avoid introducing
regression after refactoring was applied. Concerning the correction improvement reported by
EARMO, we manually validated the outcome of refactorings performed in the source code
with respect to the ones applied to the abstract model, to ensure that the output values of
the objective functions correspond to the changes performed. However, we rely on the correct
representation of the code generated by Ptidej Tool Suite [156], that has been used in several
studies of anti-patterns, and software maintenance. Considering energy measurements we
used a phone model used in previous works. Plus our measurement apparatus has the same
or higher number of sampling bits than previous studies, and our sampling frequency is
one order of magnitude higher than past studies. Overall, we believe our measurements are
more precise or at least as precise as similar previous studies. As in most previous studies
we cannot exclude the impact of Android operating system. What is measured is a mix of
Android and application actions. We mitigate this by running the application multiple times
and we process energy and execution traces to take into account only the energy consumption
of method calls belonging to the app. Because interpreted code runs slowly when profiling
is enabled, it is probable that the energy consumption associated with each method call
is higher. However, given that the profiling was enabled in all the experiments, we can
assume that the instrumentation overhead introduced by the production of execution traces
is constant between different runs of the same scenario.

Threats to internal validity concern our selection of anti-patterns, tools, and analysis method.
We used a particular yet representative subset of anti-patterns as a proxy for design quality.
Regarding energy measurements, we computed the energy using well known theory and the
scenarios were replicated several times to ensure statistical validity. From the set of anti-
patterns studied, we target one that is related to the use of device sensors, that is Binding
Resources too early. Because our setup is measured inside a building, device location might
be computed using Wi-Fi instead of GPS if the reception is not good enough. In that case,
it is likely to be less than the cost of using GPS sensor outdoors. This also applies to
network connections, where the cost incurred for connecting through Wi-Fi is likely to be
less than the one incurred for using a cellular network. Additionally, in the evaluation of
EARMO we use MonkeyRunner to communicate with apps though simulated signals rather

137

than signals triggered through real sensors (for example, touchscreens or gravity sensors)
on mobile devices, that could be regarded as not realistic. In case that a more realistic
measurement is required, we can substitute intrusive methods, like Monkeyrunner, with a
robot arm that uses the same cyber-physical interface as the human user [188].

Conclusion validity threats concern the relation between the treatment and the outcome. We
paid attention not to violate assumptions of the constructed statistical models. In particular,
we used a non-parametric test, Mann-Whitney U Test, Cliff’s δ ES, that does not make
assumptions on the underlying data distribution.

Reliability validity threats concern the possibility of replicating this study. The apps and tools
used in this study are open-source. To obtain the same results, the same model of phone
and version of Android operating system should be used. Moreover, the scenarios defined for
each application are only valid for the apps versions selected for our testbed. The reason is
that the scenarios were build based on absolute coordinates of the screen. If another model
of phone is used, or the app’s interface changes, the scenarios will not be valid.

Threats to external validity concern the possibility to generalize our results. These results
have to be interpreted carefully as they may depend on the specific device where we ran
the experiments, the operating system and the virtual machine (VM) used by the operating
system. For the former one, it is well known that in ART (Android Run Time used in
this work) the apps are compiled to native code once, improving the memory and CPU
performance, while the previous VM for Android (Dalvik) runs along with the execution of
an app, and may perform profile-directed optimizations on the fly. To validate this threat,
we execute the energy consumption validation using Dalvik and ART VMs and found ±1%
of difference in the median of γ(E ′, E0) values for the apps used in the energy consumption
validation. Hence, we suggest that our results area valid for both VMs, for the set of anti-
patterns, apps, and scenarios used in this work.

Our study focuses on 20 android apps with different sizes and belonging to different domains
from F-Droid, which is one of the largest repositories of open-source Android apps. Still,
it is unclear if our findings would generalize to all Android applications. Yet, more studies
and possibly a larger dataset is desirable. Future replications of this study are necessary to
confirm our findings. External validity threats do not only apply to the limited number of
apps, but also to the way they have been selected (randomly), their types (only free apps),
and provenance (one app store). For this reason this work is susceptible to the App Sampling
Problem [189], which exists when only a subset of apps are studied, resulting in potential
sampling bias. Nevertheless, we considered apps from different size and domains, and the
anti-patterns studied are the most critical according to developers perception [7, 110].

138

7.6 Chapter Summary

In this chapter, we have proposed EARMO, a novel approach that takes into account energy
efficiency when refactoring mobile apps. Specifically, we set out to address the following
question:

�
�

�
�

Central Question: Is it possible to improve automated refactoring of mobile apps by
considering energy concerns?

We answer this question by performing two case studies.

1. A preliminary study to assess the impact of well-known OO and mobile anti-patterns
on energy consumption.

2. A full-scale study to evaluate EARMO using three evolutionary multiobjective tech-
niques on a benchmark of 20 free and open-source apps.

The results of our empirical evaluations show that for the set of anti-patterns studied, they do
impact the energy efficiency of mobile apps. That EARMO can propose solutions to remove a
median of 84% of anti-patterns, with a median execution time of less than a minute. We also
quantify the battery energy gain of EARMO and found that in a multimedia app, when the
proposed scenario is executed continuously until the battery is drained out, it could extend
the battery life by up to 29 minutes.

We also demonstrated that in the instance of search space explored by the metaheuristics im-
plemented, different compromise solutions are found, justifying the need for a multiobjective
formulation.

Concerning the quality of the solutions proposed, we manually evaluated the precision of the
sequences generated by EARMO and obtained a median of 68% precision score. We study
the cases where some of the refactorings in a sequence are not valid and provide valuable
guidelines for toolsmiths to improve the precision of automated refactoring approaches.

We also evaluated the overall design quality of the refactored apps in terms of five high-level
quality attributes assessed by an external model, and reported gains in terms of understand-
ability, flexibility, and extendibility of the resulting designs.

Finally, we conducted a qualitative study to assess the quality of the refactoring recommen-
dations made by EARMO from the point of view of developers. Developers found 68% of
refactorings suggested by EARMO to be very relevant.

139

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

Refactoring is an important maintenance task aimed to support the evolution of software
systems. Manually refactoring is a laborious and effort consuming task. Many researchers
(cf. section 3.1.2) have proposed (semi)automated approaches to perform refactoring. These
approaches have proven to be efficient in improving the design quality of the refactored
systems. However, their analysis focus on a set of limited attributes (semantic coherence,
development history) to guide the refactoring search process. The inclusion of developer’s
task context, refactoring effort, testing effort, and energy efficiency, could improve automated
refactoring. Hence, in this dissertation, our thesis was:

�

�

�

Search-based refactoring can be readily used for automatically improving software design
quality while (1) cutting the cost of anti-patterns detection and correction; (2) making
more efficient use of computational resources than existing approaches; and (3) providing
useful solutions from developer’s perspective

To prove our hypothesis, we proposed to consider developer’s task context, refactoring order
and conflict awareness, testing effort, and energy efficiency of mobile apps to better guide
the automated refactoring process.

8.1 Advancement of knowledge

In the following paragraphs, we summarize our main contributions to the advancement of
the knowledge.

8.1.1 Improving automated refactoring using developer’s task context

The first contribution of this dissertation is using developer’s task context to prioritize the
refactoring of relevant classes during regular coding activities. Instead of recommending a
large list of refactorings in a root-canal refactoring style, we propose to put developers on
the loop, and when they write their code, a list of candidate refactorings are generated based
on their task context (floss refactoring style). This is a more natural way of refactoring, and
help developers to improve the quality of their system, and to assess their design choices.

By performing a large-scale study over 1,705 interaction histories associated to bug fixing
activities, we showed that the accumulated effect of refactoring only the classes contained in

140

developer’s context corrected more than 50% of the total number of anti-patterns in a testbed
of three OSS. We also observe that at least 41% of the anti-patterns detected using root-
canal refactoring style, affect classes that were not present in developer’s context, suggesting
that the refactoring activity for these classes could be postponed it, or was not very critical.
Hence, the solutions proposed by our refactoring approach prioritize the most important
classes according to the developer’s environment.

8.1.2 Improving automated refactoring through efficient scheduling

The second contribution is about reducing the search-space of the refactoring scheduling
problem, by modeling conflict and dependencies among refactorings, and by taken inspiration
from model checking techniques (partial order reduction) to eliminate redundant refactoring
solutions. Our proposed approach, RePOR, was able to correct a median of 73% of anti-
patterns, while reducing both refactoring effort, and execution time to 80% in comparison
to the values achieved by three metaheuristics (GA, Ant Colony and LIU), on a testbed
of five open-source systems. We also implemented RePOR as an Eclipse Plug-in, which
can be freely downloaded from the author’s personal web site [158], to perform automated
refactoring during software development and maintenance activities.

8.1.3 Improving automated refactoring by considering testing effort

Our third contribution is considering testing cost while performing refactoring. First, we
empirically showed that developer’s design choices can affect the testability of a system, and
that a compromise between design quality and testing effort exists. To control the effect of
refactoring on testing effort, we formulate refactoring as multiobjective problem considering
quality improvement and testing effort and solve it using three state-of-the-art EMO algo-
rithms. On a testbed of four open-source systems, we show that our EMO algorithms could
correct a median of 46% of anti-patterns while reducing testing effort by 48% compared to
the initial system design. We also observe that considering only anti-patterns removal, yield
to larger number of test cases. We also assessed the design quality of the refactored systems
using QMOOD, and found that the effectiveness of the refactored systems was increased by
up to 15%.

141

8.1.4 Improving automated refactoring of mobile apps by controlling for energy
efficiency

The fourth contribution of this dissertation is using energy consumption of anti-patterns to
improve the energy efficiency of mobile apps during refactoring activity. First, we showed
that by removing anti-patterns (OO and Android) we can affect the the energy efficiency of
mobile apps. Next, we proposed multiobjective refactoring approach, called EARMO, that
controls for energy consumption while refactoring. We evaluate EARMO by performing a set
of comprehensive case studies on a testbed of 20 android apps, and found the following results.
EARMO corrected a median of 84% of anti-patterns, and achieved a median improvement of
41% of the extendibility of the app’s design according to QMOODmodel. Moreover, we found
that 68% of the solutions proposed by EARMO were accepted by the original developers of
the apps studied. Concerning energy efficiency of the refactored apps, we found that EARMO
could extend the battery life by up to 29 minutes for a multimedia app when continuously
running a typical scenario.

8.2 Recommendations and future work

In this dissertation, we have verified our thesis and proved that search-based refactoring can
be enhanced by considering several dimensions (task context, refactoring effort, testing effort
and energy efficiency) to improve the design quality of software systems. This results opens
interesting new research directions that we describe below.

8.2.1 Automated Refactoring of testing artifacts

As we described in Section 2.1, it is important to keep consistency between software design
and other software artifacts. Testing is crucial in software development cycle and we em-
pirically proved that refactoring have an impact on testing effort. Indeed, we propose an
approach to control for testing effort. However, testing artifacts could become obsolete after
a major software architectural change (including refactoring), which requires developers to
invest time to update and validate their integrity. In addition, previous works have report
the existence of test anti-patterns, and their negative effects on software development activ-
ities [190, 191]. As part of our future work, we propose the development new mechanisms to
automatically refactor testing artifacts in conjunction with production code.

142

8.2.2 Improving automated refactoring by considering code lexicon

One of the current problems in automated approaches is the production of sound identifiers
names when transforming the code. Ouni et al. [26] proposed an approach to prioritize
refactorings that maintain the semantic of a software system’s naming conventions. However,
their approach didn’t leverage the the linguistic context of the systems, when naming the new
entities added in the software systems (classes, methods, etc.) during refactoring. Therefore,
we suggest that learning linguistic patterns from a software system could help to improve
automated refactoring, as linguistic patterns capture the meaning of the code entities and the
intention of the methods. Linguistic patterns help developers to better understand the code
they are working on, and to ease software evolution and maintenance tasks. Moreover, as
systems grown in size and complexity, the cost of learning and adopting the system’s naming
conventions for new developers integrating a team is not negligible. However, advancements
in machine learning techniques now makes it possible to learn these linguistic patterns.

8.2.3 Evaluating the usefulness of automated approaches

The results of this dissertation emphasize the benefits of the refactoring solutions in terms
of anti-patterns correction and desirable design quality attributes (reusability, understand-
ability, flexibility, etc.). However, it is important to evaluate the usefulness of the solutions
proposed by a refactoring approach from the perspective of developers. In chapter 7, we sur-
veyed developers of mobile apps about the relevance of the refactorings proposed by EARMO
in our testbed, and found 68% of the refactorings to be very relevant to developers. Yet, it
is necessary to perform further studies with developers from open- and close- source systems
to improve even more the usefulness of automated refactoring techniques.

As a result of the research performed in this dissertation, we came with the idea of perform
several user studies to answer some of the following questions about the usefulness of au-
tomated refactoring. For example, how much does developers like automated refactorings
in comparison to manual refactoring changes? Which refactorings can be safely automated
without affecting the comprehensibility of the code? Can an automated approach perform
better than a developer in performing refactoring? Beside naming conventions, which other
code attributes are important to be considered in a refactoring approach to be useful for
developers?

143

8.3 Final remarks

One of the main complains that we received from developers from the automated refactorings
solutions proposed in this dissertation was not about the correctness of the solutions proposed,
but the pertinence of the solutions with respect to developer’s design quality priorities. With
this respect, existing refactorings catalogs (Fowler, Brown, etc.) need to be updated to reflect
the latest technology advancements and the emergence of new programming languages, and
technologies (e.g., cloud, mobile, Internet of things, etc.). Despite the large body of work on
refactoring and automated approaches (cf. Chapter 3) and the approaches proposed in this
dissertation, we foresee more work on the following topics: (1) the transition from legacy
systems (e.g., client-sever architectures) to emergent technologies through refactorings; (2)
refactorings of software developed using new emergent technologies.

144

REFERENCES

[1] R. S. Pressman andW. S. Jawadekar, Software engineering - A Practitioner’s Approach,
5th ed. McGraw-Hill Higher Education, 2001.

[2] M. M. Lehman, “Feedback in the software evolution process,” Information and Software
Technology, vol. 38, no. 11, pp. 681–686, November 1996.

[3] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and T. J. Mowbray,
Anti Patterns : Refactoring Software, Architectures, and Projects in Crisis, 1st ed.
John Wiley and Sons, March 1998.

[4] F. Khomh, M. D. Penta, Y.-G. Gueheneuc, and G. Antoniol, “An exploratory study
of the impact of antipatterns on class change- and fault-proneness,” Empirical Softw.
Engg., vol. 17, no. 3, pp. 243–275, Jun. 2012.

[5] J. O. Coplien and N. B. Harrison, Organizational Patterns of Agile Software Develop-
ment, 1st ed. Prentice-Hall, Upper Saddle River, NJ (2005), 2005.

[6] A. J. Riel, Object-oriented design heuristics. Addison-Wesley Reading, 1996, vol. 335.

[7] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia, “Do they really smell
bad ? a study on developers’ perception of bad code smells,” in Software Maintenance
and Evolution (ICSME), 2014 IEEE Int’l Conference on. IEEE, 2014, pp. 101–110.

[8] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical study of
the impact of two antipatterns, blob and spaghetti code, on program comprehension,”
in Software Maintenance and Reengineering (CSMR), 2011 15th European Conf. on,
March 2011, pp. 181–190.

[9] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Guéhéneuc, “Tracking design smells :
Lessons from a study of god classes,” in Reverse Engineering, 2009. WCRE’09. 16th
Working Conf. on. IEEE, 2009, pp. 145–154.

[10] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad smells in object-
oriented code,” in Quality of Information and Communications Technology (QUATIC),
2010 7th Int’l Conf. on the. IEEE, 2010, pp. 106–115.

[11] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. dissertation, Univer-
sity of Illinois at Urbana-Champaign, 1992.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring : Improving
the Design of Existing Code. Addison-Wesley, 1999.

145

[13] B. van Rompaey, B. Du Bois, S. Demeyer, J. Pleunis, R. Putman, K. Meijfroidt, J. C.
Dueas, and B. Garcia, “Serious : Software evolution, refactoring, improvement of opera-
tional and usable systems,” in Software Maintenance and Reengineering, 2009. CSMR
’09. 13th European Conf. On, 2009, Conference Proceedings, pp. 277–280.

[14] Q. D. Soetens and S. Demeyer, “Studying the effect of refactorings : A complexity me-
trics perspective,” in Quality of Information and Communications Technology (QUA-
TIC), 2010 7th Int’l Conf. On the, 2010, Conference Proceedings, pp. 313–318.

[15] T. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. SE-2, no. 4, pp.
308–320, dec 1976.

[16] B. D. Bois, S. Demeyer, J. Verelst, T. Mens, and M. Temmerman, “Does god class
decomposition affect comprehensibility ?” in IASTED Conf. on Software Engineering,
2006, Conference Paper, pp. 346–355.

[17] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring challenges
and benefits,” in Proc. of the ACM SIGSOFT 20th Int’l Symposium on the Foundations
of Softw. Eng., ser. FSE ’12. ACM, 2012, pp. 50 :1–50 :11.

[18] S. A. Slaughter, D. E. Harter, and M. S. Krishnan, “Evaluating the cost of software
quality,” Commun. ACM, vol. 41, no. 8, pp. 67–73, Aug. 1998. [Online]. Available :
http://doi.acm.org/10.1145/280324.280335

[19] J. R. Cordy, “Comprehending reality-practical barriers to industrial adoption of soft-
ware maintenance automation,” in Program Comprehension, 2003. 11th IEEE Inter-
national Workshop on. IEEE, 2003, Conference Proceedings, pp. 196–205.

[20] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases improve software
quality ? : an empirical case study of mozilla firefox,” in Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories. IEEE Press, 2012, pp. 179–188.

[21] T. Mariani and S. R. Vergilio, “A systematic review on search-based refactoring,” In-
formation and Software Technology, vol. 83, pp. 14–34, 2017.

[22] M. O’Keeffe and M. Ó Cinnéide, “Search-based refactoring for software maintenance,”
Journal of Systems and Software, vol. 81, no. 4, pp. 502–516, 2008.

[23] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination of refactorings for
improving the class structure of object-oriented systems,” GECCO 2006 : Genetic and
Evolutionary Computation Conference, Vol 1 and 2, pp. 1909–1916, 2006.

[24] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “Design
defects detection and correction by example,” in Program Comprehension (ICPC),
2011 IEEE 19th International Conference on. IEEE, 2011, pp. 81–90.

http://doi.acm.org/10.1145/280324.280335

146

[25] F. Qayum and R. Heckel, “Local search-based refactoring as graph transformation,”
in Search Based Software Engineering, 2009 1st International Symposium on. IEEE,
2009, Conference Proceedings, pp. 43–46.

[26] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “Search-based refactoring :
Towards semantics preservation,” in Software Maintenance (ICSM), 2012 28th IEEE
International Conference on. IEEE, 2012, Conference Proceedings, pp. 347–356.

[27] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi, “Improving
multi-objective code-smells correction using development history,” Journal of Systems
and Software, vol. 105, no. Supplement C, pp. 18–39, 2015. [Online]. Available :
http://www.sciencedirect.com/science/article/pii/S0164121215000631

[28] E. Murphy-Hill and A. P. Black, “Refactoring tools : Fitness for purpose,” Software,
IEEE, vol. 25, no. 5, pp. 38–44, 2008.

[29] K. Beck, Extreme programming explained : embrace change. addison-wesley professio-
nal, 2000.

[30] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk, “Optimizing energy consumption of guis in android apps : A multi-
objective approach,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 2015, pp. 143–154.

[31] D. Li and W. G. J. Halfond, “An investigation into energy-saving programming
practices for android smartphone app development,” in Proceedings of the
3rd International Workshop on Green and Sustainable Software, ser. GREENS
2014. New York, NY, USA : ACM, 2014, pp. 46–53. [Online]. Available :
http://doi.acm.org/10.1145/2593743.2593750

[32] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury, “Detecting energy
bugs and hotspots in mobile apps,” in Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ACM, 2014, pp. 588–598.

[33] M. Fowler, Refactoring : improving the design of existing code. Pearson Education
India, 1999.

[34] T. Mens and T. Tourwé, “A survey of software refactoring,” Software Engineering,
IEEE Transactions on, vol. 30, no. 2, pp. 126–139, 2004.

[35] T. Tourwé and T. Mens, “Identifying refactoring opportunities using logic meta pro-
gramming,” in Software Maintenance and Reengineering, 2003. Proceedings. Seventh
European Conference on. IEEE, 2003, pp. 91–100.

http://www.sciencedirect.com/science/article/pii/S0164121215000631
http://doi.acm.org/10.1145/2593743.2593750

147

[36] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintainability defects de-
tection and correction : a multi-objective approach,” Automated Software Engineering,
vol. 20, no. 1, pp. 47–79, 2013.

[37] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant : Identification and
removal of type-checking bad smells,” in Software Maintenance and Reengineering,
2008. CSMR 2008. 12th European Conference on. IEEE, 2008, pp. 329–331.

[38] T. DeMarco, Controlling software projects : Management, measurement, and estimates.
Prentice Hall PTR, 1986.

[39] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” IEEE
Transactions on software engineering, vol. 20, no. 6, pp. 476–493, 1994.

[40] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality
assessment,” Software Engineering, IEEE Transactions on, vol. 28, no. 1, pp. 4–17,
2002.

[41] F. Khomh and Y.-G. Guéhéneuc, “Dequalite : Building design-based software quality
models,” in Proceedings of the 15th Conference on Pattern Languages of Programs,
ser. PLoP ’08. New York, NY, USA : ACM, 2008, pp. 2 :1–2 :7. [Online]. Available :
http://doi.acm.org/10.1145/1753196.1753199

[42] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know it,”
Software Engineering, IEEE Transactions On, vol. 38, no. 1, pp. 5–18, 2012.

[43] M. O’Keeffe and M. O. Cinnéide, “Search-based software maintenance,” in Software
Maintenance and Reengineering, 2006. CSMR 2006. Proceedings of the 10th European
Conference on, 2006, Conference Proceedings, pp. 10 pp.–260.

[44] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination of refactorings for
improving the class structure of object-oriented systems,” GECCO 2006 : Genetic and
Evolutionary Computation Conference, Vol 1 and 2, pp. 1909–1916, 2006.

[45] M. Harman and L. Tratt, “Pareto optimal search based refactoring at the design level,”
in Proceedings of the 9th annual conference on Genetic and evolutionary computation.
ACM, 2007, Conference Proceedings, pp. 1106–1113.

[46] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “The use of development history
in software refactoring using a multi-objective evolutionary algorithm,” in Proceedings
of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013,
Conference Paper, pp. 1461–1468.

[47] M. Fowler, Refactoring – Improving the Design of Existing Code, 1st ed. Addison-
Wesley, June 1999.

http://doi.acm.org/10.1145/1753196.1753199

148

[48] M. Gottschalk, “Energy refactorings,” Master’s thesis, Carl von Ossietzky University,
2013.

[49] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the performance impacts of
android code smells,” in Proceedings of the International Workshop on Mobile Software
Engineering and Systems, ser. MOBILESoft ’16. New York, NY, USA : ACM, 2016,
pp. 59–69. [Online]. Available : http://doi.acm.org/10.1145/2897073.2897100

[50] “Android API : ArrayMap,” https://developer.android.com/reference/android/
support/v4/util/ArrayMap.html, [Online ; accessed 18th-May-2017].

[51] “Android performance tips,” https://developer.android.com/training/articles/
perf-tips.html, June 2016.

[52] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A. Le Meur, “Decor : A method for the
specification and detection of code and design smells,” Software Engineering, IEEE
Transactions on, vol. 36, no. 1, pp. 20–36, 2010.

[53] J. M. Chambers, Graphical Methods for Data Analysis, 1st ed. Wadsworth Interna-
tional Group, 1983.

[54] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineering :
Trends, techniques and applications,” ACM Comput. Surv., vol. 45, no. 1, pp. 11 :1–
11 :61, Dec. 2012. [Online]. Available : http://doi.acm.org/10.1145/2379776.2379787

[55] R. Morales, F. Chicano, F. Khomh, and G. Antoniol, “Exact search-space size for
the refactoring scheduling problem,” Automated Software Engineering Journal, 2017.
[Online]. Available : http://dx.doi.org/10.1007/s10515-017-0213-6

[56] S. Kirkpatrick, “Optimization by simulated annealing : Quantitative studies,” Journal
of statistical physics, vol. 34, no. 5-6, pp. 975–986, 1984.

[57] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2, pp.
65–85, 1994.

[58] ——, “An overview of evolutionary algorithms : practical issues and common pitfalls,”
Information and software technology, vol. 43, no. 14, pp. 817–831, 2001.

[59] N. Mladenović and P. Hansen, “Variable neighborhood search,” Computers & Opera-
tions Research, vol. 24, no. 11, pp. 1097–1100, 1997.

[60] D. F. Lochtefeld and F. W. Ciarallo, “Multi-objectivization via decomposition :
An analysis of helper-objectives and complete decomposition,” European Journal of
Operational Research, vol. 243, no. 2, pp. 395 – 404, 2015. [Online]. Available :
http://www.sciencedirect.com/science/article/pii/S0377221714009916

http://doi.acm.org/10.1145/2897073.2897100
https://developer.android.com/reference/android/support/v4/util/ArrayMap.html
https://developer.android.com/reference/android/support/v4/util/ArrayMap.html
https://developer.android.com/training/articles/perf-tips.html
https://developer.android.com/training/articles/perf-tips.html
http://doi.acm.org/10.1145/2379776.2379787
http://dx.doi.org/10.1007/s10515-017-0213-6
http://www.sciencedirect.com/science/article/pii/S0377221714009916

149

[61] J. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the performance assessment of
stochastic multiobjective optimizers,” Tik report, vol. 214, pp. 327–332, 2006.

[62] K. Deb, Multi-objective optimization using evolutionary algorithms. John Wiley &
Sons, 2001, vol. 16.

[63] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm : Nsga-ii,” Evolutionary Computation, IEEE Transactions on, vol. 6,
no. 2, pp. 182–197, 2002.

[64] E. Zitzler, M. Laumanns, L. Thiele, E. Zitzler, E. Zitzler, L. Thiele, and L. Thiele,
“SPEA2 : Improving the strength pareto evolutionary algorithm,” 2001.

[65] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “MOCell : A cellular
genetic algorithm for multiobjective optimization,” International Journal of Intelligent
Systems, pp. 25–36, 2007.

[66] ——, “Design issues in a multiobjective cellular genetic algorithm,” in Proceeding of
the Conference on Evolutionary Multi-Criterion Optimization, volume 4403 of LNCS.
Springer, 2007, pp. 126–140.

[67] B. W. Boehm, J. R. Brown, and H. Kaspar, Characteristics of software quality. North-
Holland, 1978.

[68] R. G. Dromey, “Cornering the chimera [software quality],” IEEE Software, vol. 13,
no. 1, pp. 33–43, 1996.

[69] M. O’Keeffe and M. O. Cinneide, “Getting the most from search-based refactoring,” in
Gecco 2007 : Genetic and Evolutionary Computation Conference, Vol 1 and 2, 2007,
Journal Article, pp. 1114–1120.

[70] R. Marinescu, “Detection strategies : Metrics-based rules for detecting design flaws,”
in IEEE Int’l Conference on Software Maintenance, ICSM. IEEE Computer Society,
2004, Conference Proceedings, pp. 350–359.

[71] M. Munro, “Product metrics for automatic identification of "bad smell" design problems
in java source-code,” in Software Metrics, 2005. 11th IEEE International Symposium,
Sep. 2005, pp. 15–15.

[72] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian approach for
the detection of code and design smells,” in Quality Software, 2009. QSIC’09. 9th
International Conference on. IEEE, 2009, pp. 305–314.

[73] R. Marinescu, G. Ganea, and I. Verebi, “Incode : Continuous quality assessment and
improvement,” in Software Maintenance and Reengineering (CSMR), 2010 14th Euro-
pean Conference on, March 2010, pp. 274–275.

150

[74] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and A. De Lucia,
“Mining version histories for detecting code smells,” IEEE Transactions on Software
Engineering, vol. 41, no. 5, pp. 462–489, 2015.

[75] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “Lightweight
detection of android-specific code smells : The adoctor project,” in Software Analysis,
Evolution and Reengineering (SANER), 2017 IEEE 24th International Conference on.
IEEE, 2017, pp. 487–491.

[76] I. H. Moghadam and M. O. Cinneide, “Code-imp : A tool for automated search-based
refactoring,” in Proceedings of the 4th Workshop on Refactoring Tools. IEEE Computer
Society, 2011, Conference Proceedings, pp. 41–44.

[77] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide, “Recom-
mendation system for software refactoring using innovization and interactive dynamic
optimization,” in Proceedings of the 29th ACM/IEEE Int’l Conf. on Automated software
engineering. ACM, 2014, pp. 331–336.

[78] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodorant : identifica-
tion and application of extract class refactorings,” in Proceedings of the 33rd Interna-
tional Conference on Software Engineering. ACM, 2011, pp. 1037–1039.

[79] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “Jdeodorant : Identification and re-
moval of feature envy bad smells,” in Software Maintenance, 2007. ICSM 2007. IEEE
International Conference on, 2007, pp. 519–520.

[80] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method refactoring op-
portunities for the decomposition of methods,” Journal of Systems and Software,
vol. 84, no. 10, pp. 1757–1782, 2011.

[81] T. Mens, G. Taentzer, and O. Runge, “Analysing refactoring dependencies using graph
transformation,” Software and Systems Modeling, vol. 6, no. 3, pp. 269–285, 2007.

[82] H. Liu, G. Li, Z. Y. Ma, and W. Z. Shao, “Conflict-aware schedule of software refacto-
rings,” IET Software, vol. 2, no. 5, p. 446, 2008.

[83] H. Liu, Z. Ma, W. Shao, and Z. Niu, “Schedule of bad smell detection and resolution :
A new way to save effort,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 220–235, 2012.

[84] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler, “A novel approach to optimize
clone refactoring activity,” in Proceedings of the 8th annual conference on Genetic and
evolutionary computation. ACM, 2006, pp. 1885–1892.

151

[85] S. Lee, G. Bae, H. S. Chae, D. Bae, and Y. R. Kwon, “Automated scheduling for clone-
based refactoring using a competent ga,” Software : Practice and Experience, vol. 41,
no. 5, pp. 521–550, 2011.

[86] M. F. Zibran and C. K. Roy, “A constraint programming approach to conflict-aware
optimal scheduling of prioritized code clone refactoring,” in 2011 IEEE 11th Internatio-
nal Working Conference on Source Code Analysis and Manipulation, 2011, Conference
Proceedings, pp. 105–114.

[87] I. H. Moghadam and M. O. Cinnéide, “Resolving conflict and dependency in refactoring
to a desired design,” e-Informatica Software Engineering Journal, vol. 9, no. 1, 2015.

[88] M. Kersten and G. C. Murphy, “Using task context to improve programmer producti-
vity,” in Proceedings of the 14th ACM SIGSOFT/FSE, 2006, pp. 1–11.

[89] R. Robbes and M. Lanza, “Improving code completion with program history,” Auto-
mated Software Engineering, vol. 17, no. 2, pp. 181–212, June 2010.

[90] S. Lee, S. Kang, S. Kim, and M. Staats, “The impact of view histories on edit recom-
mendations,” Software Engineering, IEEE Transactions on, vol. 41, no. 3, pp. 314–330,
March 2015.

[91] H. Sanchez, R. Robbes, and V. M. Gonzalez, “An empirical study of work fragmentation
in software evolution tasks,” in Proceedings SANER, 2015, pp. 251–260.

[92] A. Ying and M. Robillard, “The influence of the task on programmer behaviour,” in
Proceedings ICPC, june 2011, pp. 31–40.

[93] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study of the effect of
file editing patterns on software quality,” in Proceedings WCRE, 2012, pp. 456–465.

[94] Z. Soh, F. Khomh, Y.-G. Gueheneuc, G. Antoniol, and B. Adams, “On the effect of
program exploration on maintenance tasks,” in Reverse Engineering (WCRE), 2013
20th Working Conference on, Oct 2013, pp. 391–400.

[95] B. Beizer, Software Testing Techniques 2nd edition. International Thomson Computer
Press, 1990.

[96] M. Bruntink and A. van Deursen, “An empirical study into class testability,”
J. Syst. Softw., vol. 79, no. 9, pp. 1219–1232, Sep. 2006. [Online]. Available :
http://dx.doi.org/10.1016/j.jss.2006.02.036

[97] A. Sabane, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc, “A study on the relation
between antipatterns and the cost of class unit testing,” in Software Maintenance and
Reengineering (CSMR), 2013 17th European Conference on. IEEE, 2013, pp. 167–176.

http://dx.doi.org/10.1016/j.jss.2006.02.036

152

[98] P. McMinn and M. Holcombe, “Evolutionary testing of state-based programs,” in
Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation,
ser. GECCO ’05. New York, NY, USA : ACM, 2005, pp. 1013–1020. [Online].
Available : http://doi.acm.org/10.1145/1068009.1068182

[99] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans. Software Eng.,
vol. 39, no. 2, pp. 276–291, 2013.

[100] I. Bashir and A. L. Goel, Testing Object-Oriented Software : Life-Cycle Solutions,
1st ed. Secaucus, NJ, USA : Springer-Verlag New York, Inc., 2000.

[101] C. Boyapati, S. Khurshid, and D. Marinov, “Korat : Automated testing based on java
predicates,” in ACM SIGSOFT Software Engineering Notes, vol. 27, no. 4. ACM,
2002, pp. 123–133.

[102] T. S. Chow, “Testing software design modeled by finite-state machines,” IEEE tran-
sactions on software engineering, no. 3, pp. 178–187, 1978.

[103] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and M. Roper,
“Testability transformation,” IEEE Trans. Softw. Eng., vol. 30, no. 1, pp. 3–16, Jan.
2004. [Online]. Available : http://dx.doi.org/10.1109/TSE.2004.1265732

[104] M. Harman, “Refactoring as testability transformation,” in Proceedings of the 2011
IEEE Fourth International Conference on Software Testing, Verification and Validation
Workshops, ser. ICSTW ’11. Washington, DC, USA : IEEE Computer Society, 2011,
pp. 414–421. [Online]. Available : http://dx.doi.org/10.1109/ICSTW.2011.38

[105] M. Linares-Vásquez, S. Klock, C. McMillan, A. Sabane, D. Poshyvanyk, and Y.-G.
Guéhéneuc, “Domain matters : bringing further evidence of the relationships among
anti-patterns, application domains, and quality-related metrics in Java mobile apps,”
in Proceedings of the 22nd International Conference on Program Comprehension, C. K.
Roy, A. Begel, and L. Moonen, Eds. ACM, 2014, pp. 232–243.

[106] D. Verloop, Code Smells in the Mobile Applications Domain. TU Delft, Delft University
of Technology, 2013.

[107] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “Jdeodorant : Identification and re-
moval of feature envy bad smells,” in ICSM, 2007, pp. 519–520.

[108] J. Reimann, M. Brylski, and U. Aßmann, “A tool-supported quality smell catalogue
for android developers.” Softwaretechnik-Trends, vol. 34, no. 2, 2014.

[109] J. Reimann, M. Seifert, and U. Aßmann, “On the reuse and recommendation of model
refactoring specifications,” Software and System Modeling, vol. 12, no. 3, pp. 579–596,
2013. [Online]. Available : http://dx.doi.org/10.1007/s10270-012-0243-2

http://doi.acm.org/10.1145/1068009.1068182
http://dx.doi.org/10.1109/TSE.2004.1265732
http://dx.doi.org/10.1109/ICSTW.2011.38
http://dx.doi.org/10.1007/s10270-012-0243-2

153

[110] G. Hecht, B. Omar, R. Rouvoy, N. Moha, and L. Duchien, “Tracking the Software
Quality of Android Applications along their Evolution,” in 30th IEEE/ACM
International Conference on Automated Software Engineering, ser. Proceedings of the
30th IEEE/ACM International Conference on Automated Software Engineering (ASE
2015), L. Grunske and M. Whalen, Eds. Lincoln, Nebraska, United States : IEEE,
Nov. 2015, p. 12. [Online]. Available : https://hal.inria.fr/hal-01178734

[111] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy, “Investigating the
energy impact of android smells,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Feb 2017, pp. 115–126.

[112] K. Aggarwal, A. Hindle, and E. Stroulia, “GreenAdvisor : A tool for analyzing the
impact of software evolution on energy consumption,” in ICSME. IEEE, 2015, pp.
311–320.

[113] I. Polato, D. Barbosa, A. Hindle, and F. Kon, “Hybrid HDFS : decreasing energy
consumption and speeding up hadoop using ssds,” PeerJ PrePrints, vol. 3, p. e1320,
2015. [Online]. Available : http://dx.doi.org/10.7287/peerj.preprints.1320v1

[114] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do programmers know about
the energy consumption of software ?” PeerJ PrePrints, vol. 3, p. e886, 2015.

[115] C. Zhang, A. Hindle, and D. M. Germán, “The impact of user choice on energy
consumption,” IEEE Software, vol. 31, no. 3, pp. 69–75, 2014. [Online]. Available :
http://dx.doi.org/10.1109/MS.2014.27

[116] K. Rasmussen, A. Wilson, and A. Hindle, “Green mining : energy consumption of
advertisement blocking methods.” in GREENS, 2014, pp. 38–45.

[117] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and S. Romansky,
“Greenminer : A hardware based mining software repositories software energy consump-
tion framework,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014, 2014, pp. 12–21.

[118] C. Sahin, L. L. Pollock, and J. Clause, “How do code refactorings affect energy usage ?”
in International Symposium on Empirical Software Engineering and Measurement,
ESEM, 2014, pp. 36 :1–36 :10.

[119] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk, “Mining Energy-greedy API Usage Patterns in Android Apps : An
Empirical Study,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA : ACM, 2014, pp. 2–11. [Online].
Available : http://doi.acm.org/10.1145/2597073.2597085

https://hal.inria.fr/hal-01178734
http://dx.doi.org/10.7287/peerj.preprints.1320v1
http://dx.doi.org/10.1109/MS.2014.27
http://doi.acm.org/10.1145/2597073.2597085

154

[120] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside my app ? :
fine grained energy accounting on smartphones with eprof,” in EuroSys, P. Felber,
F. Bellosa, and H. Bos, Eds. ACM, 2012, pp. 29–42.

[121] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile application energy
consumption using program analysis,” in Software Engineering (ICSE), 2013 35th In-
ternational Conference on. IEEE, 2013, pp. 92–101.

[122] W. G. P. da Silva, L. Brisolara, U. B. Correa, and L. Carro., “Evaluation of the impact of
code refactoring on embedded software efficiency,” in In Proceedings of the 1st Workshop
de Sistemas Embarcados. Bonn : Gesellschaft für Informatik, 2010, pp. 145–150.

[123] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. E. Kiamilev, L. L. Pollock,
and K. Winbladh, “Initial explorations on design pattern energy usage.” in GREENS.
IEEE, 2012, pp. 55–61.

[124] G. Pinto, A Refactoring Approach to Improve Energy Consumption of Parallel Software
Systems. Informatics Center, Federal University of Pernambuco, 2015.

[125] D. Li, A. H. Tran, and W. G. J. Halfond, “Making web applications more energy
efficient for oled smartphones,” in Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE 2014. New York, NY, USA : ACM, 2014, pp.
527–538. [Online]. Available : http://doi.acm.org/10.1145/2568225.2568321

[126] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond, “Detecting Display Energy Hotspots in
Android Apps,” in Proceedings of the 8th IEEE International Conference on Software
Testing, Verification and Validation (ICST), Apr. 2015.

[127] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption using genetic
improvement,” in Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation. ACM, 2015, pp. 1327–1334.

[128] I. Manotas, L. Pollock, and J. Clause, “SEEDS : A Software Engineer’s Energy-
optimization Decision Support Framework,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York, NY, USA : ACM,
2014, pp. 503–514. [Online]. Available : http://doi.acm.org/10.1145/2568225.2568297

[129] “Inner class example,” https://docs.oracle.com/javase/tutorial/java/javaOO/
innerclasses.html, accessed : 2015-06-03.

[130] I. H. Moghadam and M. O. Cinneide, “Automated refactoring using design differen-
cing,” in Software Maintenance and Reengineering (CSMR), 16th European Conference
on, ser. Proceedings of the European Conference on Software Maintenance and Reen-
gineering, CSMR. IEEE Computer Society, 2012, pp. 43 – 52.

http://doi.acm.org/10.1145/2568225.2568321
http://doi.acm.org/10.1145/2568225.2568297
https://docs.oracle.com/javase/tutorial/java/javaOO/innerclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/innerclasses.html

155

[131] “Mylyn wiki,” http://wiki.eclipse.org/Mylyn, accessed : 2016-02-23.

[132] L. M. Layman, L. A. Williams, and R. St Amant, “Mimec : intelligent user notifica-
tion of faults in the eclipse ide,” in Proceedings of the 2008 international workshop on
Cooperative and human aspects of software engineering. ACM, 2008, pp. 73–76.

[133] “Mylyn task-focused interface,” http://help.eclipse.org/juno/index.jsp?topic=%2Forg.
eclipse.mylyn.help.ui%2FMylyn%2FUser_Guide%2FTask-Focused-Interface.html, ac-
cessed : 2016-02-23.

[134] Z. Soh, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “Towards understanding how
developers spend their effort during maintenance activities,” in Reverse Engineering
(WCRE), 2013 20th Working Conference on, Oct 2013, pp. 152–161.

[135] E. Van Emden and L. Moonen, “Java quality assurance by detecting code smells,” in
Reverse Engineering, 2002. Proceedings. Ninth Working Conference on. IEEE, 2002,
pp. 97–106.

[136] M. Lanza and R. Marinescu, Object-oriented metrics in practice : using software metrics
to characterize, evaluate, and improve the design of object-oriented systems. Springer
Science & Business Media, 2007.

[137] “Inner class example,” https://docs.oracle.com/javase/tutorial/java/javaOO/
innerclasses.html, accessed : 2015-06-03.

[138] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization : Overview and
conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308, Sep. 2003.
[Online]. Available : http://doi.acm.org/10.1145/937503.937505

[139] D. Romano, S. Raemaekers, and M. Pinzger, “Refactoring fat interfaces using a gene-
tic algorithm,” Delft University of Technology, Software Engineering Research Group,
Tech. Rep., 2014.

[140] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in software engineering. Springer Science & Business Media, 2012.

[141] J. Cohen, Statistical power analysis for the behavioral sciences (rev. Lawrence Erlbaum
Associates, Inc, 1977.

[142] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi, “Improving multi-
objective code-smells correction using development history,” Journal of Systems and
Software, vol. 105, no. 0, pp. 18 – 39, 2015.

[143] R. K. Yin, Case Study Research : Design and Methods - Third Edition, 3rd ed. SAGE
Publications, 2002.

http://wiki.eclipse.org/Mylyn
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.mylyn.help.ui%2FMylyn%2FUser_Guide%2FTask-Focused-Interface.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.mylyn.help.ui%2FMylyn%2FUser_Guide%2FTask-Focused-Interface.html
https://docs.oracle.com/javase/tutorial/java/javaOO/innerclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/innerclasses.html
http://doi.acm.org/10.1145/937503.937505

156

[144] R. Morales, A. Sabane, P. Musavi, F. Khomh, F. Chicano, and G. Antoniol, “Finding
the best compromise between design quality and testing effort during refactoring,” in
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reen-
gineering (SANER), vol. 1, 2016, Conference Proceedings, pp. 24–35.

[145] R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F. Chicano, “On the use of develo-
pers'context for automatic refactoring of software anti-patterns,” Journal of Systems
and Software, vol. 128, pp. 236 – 251, 2017.

[146] A. Lluch-Lafuente, S. Edelkamp, and S. Leue, “Partial order reduction in directed
model checking,” in International SPIN Workshop on Model Checking of Software.
Springer, 2002, pp. 112–127.

[147] J. H. Holland, Adaptation in natural and artificial systems : an introductory analysis
with applications to biology, control, and artificial intelligence. U Michigan Press,
1975.

[148] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system : optimization by a colony
of cooperating agents,” Systems, Man, and Cybernetics, Part B : Cybernetics, IEEE
Transactions on, vol. 26, no. 1, pp. 29–41, 2006.

[149] Y.-G. Gueheneuc and H. Albin-Amiot, “Recovering binary class relationships : Putting
icing on the uml cake,” ACM SIGPLAN Notices, vol. 39, no. 10, pp. 301–314, 2004.

[150] Y.-G. Guéhéneuc and G. Antoniol, “Demima : A multi-layered framework for design
pattern identification,” Software Engineering, IEEE Transactions on, vol. 34, no. 35,
pp. 667–684, Sep 2008.

[151] D. Knuth, The Art of Computer Programming, Volume 4A : Combinatorial Algorithms,
ser. algorithms. Pearson Education, 2014, no. pt. 1.

[152] F. Khomh, M. D. Penta, Y.-G. Gueheneuc, and G. Antoniol, “An exploratory study
of the impact of antipatterns on class change- and fault-proneness,” Empirical Softw.
Engg., vol. 17, no. 3, pp. 243–275, Jun. 2012.

[153] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods. John
Wiley & Sons, 2013.

[154] N. Cliff, Ordinal methods for behavioral data analysis. Psychology Press, 2014.
[155] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine, “Exploring

methods for evaluating group differences on the nsse and other surveys : Are the t-test
and cohens'd indices the most appropriate choices,” in annual meeting of the Southern
Association for Institutional Research, 2006.

[156] Y.-G. Guéhéneuc, “Ptidej : Promoting patterns with patterns,” in Proceedings of the
1st ECOOP workshop on Building a System using Patterns. Springer-Verlag, 2005.

157

[157] R. Sedgewick and K. Wayne, Algorithms, 4th ed. Addison-Wesley, 2011.

[158] R. Morales, F. Chicano, F. Khomh, and G. Antoniol. (2017) RePOR replication
package. [Online]. Available : http://www.swat.polymtl.ca/rmorales/jss_repor/

[159] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn
defect predictors,” Software Engineering, IEEE Transactions on, vol. 33, no. 1, pp.
2–13, 2007.

[160] P. Bourque, R. E. Fairley et al., Guide to the Software Engineering Body of Knowledge
(SWEBOK (R)) : Version 3.0. IEEE Computer Society Press, 2014.

[161] Y. Le Traon, T. Jéron, J.-M. Jézéquel, and P. Morel, “Efficient object-oriented inte-
gration and regression testing,” Reliability, IEEE Transactions on, vol. 49, no. 1, pp.
12–25, 2000.

[162] B. Baudry and Y. Le Traon, “Measuring design testability of a uml class diagram,”
Information and software technology, vol. 47, no. 13, pp. 859–879, 2005.

[163] R. Binder, Testing object-oriented systems : models, patterns, and tools. Addison-
Wesley Professional, 2000.

[164] J. J. Durillo and A. J. Nebro, “jmetal : A java framework for multi-objective optimi-
zation,” Advances in Engineering Software, vol. 42, pp. 760–771, 2011.

[165] A. Jaszkiewicz, “A comparative study of multiple-objective metaheuristics on the bi-
objective set covering problem and the pareto memetic algorithm,” Annals of Opera-
tions Research, vol. 131, no. 1-4, pp. 135–158, 2004.

[166] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms : a comparative case
study and the strength pareto approach,” evolutionary computation, IEEE transactions
on, vol. 3, no. 4, pp. 257–271, 1999.

[167] G. Anthes, “Invasion of the mobile apps,” Commun. ACM, vol. 54, no. 9, pp. 16–18,
Sep. 2011. [Online]. Available : http://doi.acm.org/10.1145/1995376.1995383

[168] J. Voas, J. B. Michael, and M. van Genuchten, “The mobile software app takeover,”
Software, IEEE, vol. 29, no. 4, pp. 25–27, July 2012.

[169] D. L. Parnas, “Software aging,” in ICSE ’94 : Proc. of the 16th Int’l conference on
Software engineering. IEEE Computer Society Press, 1994, pp. 279–287.

[170] M. Gottschalk, J. Jelschen, and A. Winter, “Energy-efficient code by refactoring,” in
Softwaretechnik Trends, vol. 33, no. 2. Bonn : Gesellschaft für Informatik, 05 2013,
pp. 23–24.

http://www.swat.polymtl.ca/rmorales/jss_repor/
http://doi.acm.org/10.1145/1995376.1995383

158

[171] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan, “Predicting bugs
using antipatterns,” in Proc. of the 29th Int’l Conference on Software Maintenance,
2013, pp. 270–279.

[172] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution and impact of
code smells : A case study of two open source systems,” in 3rd Int’l Symposium on
Empirical Software Engineering and Measurement, ESEM 2009,, 2009, pp. 390–400.

[173] J. J. Park, J. Hong, and S. Lee, “Investigation for software power consumption of code
refactoring techniques,” in The 26th International Conference on Software Engineering
and Knowledge Engineering, Hyatt Regency, Vancouver, BC, Canada, July 1-3, 2013.,
2014, pp. 717–722.

[174] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “The use of development history
in software refactoring using a multi-objective evolutionary algorithm,” pp. 1461–1468,
2013.

[175] D. Singh and W. J. Kaiser, “The atom leap platform for energy-efficient embedded
computing,” Center for Embedded Network Sensing, 2010.

[176] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An Empirical Study of the Energy
Consumption of Android Applications,” in Proceedings of the International Conference
on Software Maintenance and Evolution (ICSME), Sep. 2014.

[177] R. Saborido, V. Arnaoudova, G. Beltrame, F. Khomh, and G. Antoniol, “On the impact
of sampling frequency on software energy measurements,” PeerJ PrePrints, vol. 3, p.
e1219, 2015. [Online]. Available : http://dx.doi.org/10.7287/peerj.preprints.1219v2

[178] C. Sahin, L. Pollock, and J. Clause, “From Benchmarks to Real Apps : Exploring the
Energy Impacts of Performance-directed Changes,” Journal of Systems and Software,
pp. –, 2016. [Online]. Available : http://www.sciencedirect.com/science/article/pii/
S0164121216000893

[179] A. R. Tonini, L. M. Fischer, J. C. B. de Mattos, and L. B. de Brisolara, “Analysis and
evaluation of the android best practices impact on the efficiency of mobile applications,”
in Computing Systems Engineering (SBESC), 2013 III Brazilian Symposium on. IEEE,
2013, pp. 157–158.

[180] “Monkey runner concepts,” https://developer.android.com/studio/test/
monkeyrunner/index.html, [Online ; accessed 18th-May-2017].

[181] “Debugging Android apps,” https://developer.android.com/reference/android/os/
Debug.html, [Online ; accessed 18th-May-2017].

[182] “Android API guides : Location strategies,” https://developer.android.com/guide/
topics/location/strategies.html, [Online ; accessed 18th-May-2017].

http://dx.doi.org/10.7287/peerj.preprints.1219v2
http://www.sciencedirect.com/science/article/pii/S0164121216000893
http://www.sciencedirect.com/science/article/pii/S0164121216000893
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/reference/android/os/Debug.html
https://developer.android.com/reference/android/os/Debug.html
https://developer.android.com/guide/topics/location/strategies.html
https://developer.android.com/guide/topics/location/strategies.html

159

[183] B. L. Miller and D. E. Goldberg, “Genetic algorithms, tournament selection, and the
effects of noise,” Complex systems, vol. 9, no. 3, pp. 193–212, 1995.

[184] K. Miettinen, Nonlinear Multiobjective Optimization. Springer US, 2012. [Online].
Available : https://books.google.ca/books?id=bnzjBwAAQBAJ

[185] C. Sahin, M. Wan, P. Tornquist, R. McKenna, Z. Pearson, W. G. Halfond, and
J. Clause, “How does code obfuscation impact energy usage ?” Journal of Software :
Evolution and Process, 2016.

[186] A. Banerjee and A. Roychoudhury, “Automated re-factoring of android apps to
enhance energy-efficiency,” in Proceedings of the International Workshop on Mobile
Software Engineering and Systems, ser. MOBILESoft ’16. New York, NY, USA : ACM,
2016, pp. 139–150. [Online]. Available : http://doi.acm.org/10.1145/2897073.2897086

[187] “Android API guides : Broadcasts,” https://developer.android.com/guide/
components/broadcasts.html, [Online ; accessed 18th-May-2017].

[188] K. Mao, M. Harman, and Y. Jia, “Robotic testing of mobile apps for truly black-box
automation,” IEEE Software, vol. 34, no. 2, pp. 11–16, 2017.

[189] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app sampling problem
for app store mining,” in Proceedings of the 12th Working Conference on Mining
Software Repositories, ser. MSR ’15. Piscataway, NJ, USA : IEEE Press, 2015, pp.
123–133. [Online]. Available : http://dl.acm.org/citation.cfm?id=2820518.2820535

[190] L. Moonen, G. Kok et al., “Refactoring test code,” Software Engineering [SEN], no. R
0119, pp. 1–6, 2001.

[191] M. Tufano, F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia, and D. Po-
shyvanyk, “An empirical investigation into the nature of test smells,” in 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE), Sept
2016, pp. 4–15.

https://books.google.ca/books?id=bnzjBwAAQBAJ
http://doi.acm.org/10.1145/2897073.2897086
https://developer.android.com/guide/components/broadcasts.html
https://developer.android.com/guide/components/broadcasts.html
http://dl.acm.org/citation.cfm?id=2820518.2820535

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Research Context: Software Quality
	1.2 Problem Statement
	1.2.1 Thesis

	1.3 Thesis Contributions
	1.4 Thesis Organization
	1.5 Related Publications

	2 BACKGROUND
	2.1 Introduction
	2.2 Refactoring
	2.2.1 Refactoring Styles
	2.2.2 Anti-patterns and refactoring strategies
	2.2.3 Refactoring Scheduling problem

	2.3 Metaheuristic techniques
	2.3.1 Simulated Annealing
	2.3.2 Genetic Algorithm
	2.3.3 Variable Neighborhood Search (VNS)
	2.3.4 Multiobjective optimization
	2.3.5 Non-dominated sorting genetic algorithm (NSGA-II)
	2.3.6 Strength Pareto Evolutionary Algorithm 2 (SPEA2)
	2.3.7 Multiobjective Cellular Genetic Algorithm (MOCell)

	2.4 Quality Models

	3 RELATED WORK
	3.1 Introduction
	3.1.1 Anti-patterns detection
	3.1.2 Search-based Refactoring
	3.1.3 Other refactoring approaches
	3.1.4 Refactoring Scheduling Problem
	3.1.5 Management and prioritization of anti-pattern's correction
	3.1.6 Testing Strategies
	3.1.7 Refactoring of Mobile Apps

	4 USING DEVELOPER'S CONTEXT FOR IMPROVING AUTOMATED REFACTORING
	4.1 Introduction
	4.2 Prioritizing refactoring of anti-patterns by leveraging Developer's Task Context
	4.3 Approach
	4.4 Evaluation
	4.4.1 Dependent and Independent Variables
	4.4.2 Data Collection and Processing
	4.4.3 ReCon implementation
	4.4.4 Analysis Method
	4.4.5 Results of the Experiment

	4.5 Discussion
	4.6 Threats to validity
	4.7 Chapter Summary

	5 Efficient Refactoring Schedule
	5.1 Introduction
	5.2 Reducing the search-space size of the refactoring scheduling problem
	5.3 Refactoring approach based on Partial Order Reduction
	5.3.1 Step 1: Code-design model generation
	5.3.2 Step 2: Detect Anti-patterns
	5.3.3 Step 3: Generate set of refactoring candidates (R)
	5.3.4 Step 4: Build refactorings dependency graph (GD)
	5.3.5 Step 5: Find connected components (CCAP)
	5.3.6 Step 6: Build refactorings conflict graph (GC)
	5.3.7 Step 7: Schedule a sequence of refactorings (SR)

	5.4 Case Study
	5.4.1 Research Questions
	5.4.2 Evaluation Method
	5.4.3 RePOR implementation
	5.4.4 Ant Colony Optimization Implementation
	5.4.5 Genetic Algorithm implementation
	5.4.6 LIU conflict-aware scheduling of refactorings

	5.5 Results
	5.5.1 (RQ1) To what extent can RePOR remove anti-patterns?
	5.5.2 (RQ2) How does the performance of RePOR compare to those of metaheuristics ACO, GA, and the conflict-aware approach LIU from the literature, for the correction of anti-patterns?

	5.6 Discussion
	5.7 Threats to validity
	5.8 Chapter Summary

	6 Using testing effort for improving automated refactoring
	6.1 Introduction
	6.2 Improving automated refactoring of anti-patterns by leveraging testing effort estimation
	6.2.1 Testing effort measurement

	6.3 Testing-Aware Automated Refactoring
	6.4 Case Study Design
	6.4.1 Parameters of the metaheuristics.
	6.4.2 Dependent and Independent Variables
	6.4.3 Research Questions
	6.4.4 Analysis Method

	6.5 Case Study results
	6.5.1 (RQ1) To what extent can TARF correct anti-patterns and reduce testing effort?

	6.6 Threats to validity
	6.7 Chapter Summary

	7 Improving automated refactoring by controlling for energy efficiency
	7.1 Introduction
	7.1.1 Energy measurement of mobile apps

	7.2 Preliminary Study
	7.2.1 Design of the Preliminary Study
	7.2.2 Data Extraction
	7.2.3 Data Analysis
	7.2.4 Results and Discussion of the Preliminary Study

	7.3 Energy-Aware Automated Refactoring of Mobile Apps
	7.3.1 EARMO overview
	7.3.2 Step 1: Energy consumption estimation
	7.3.3 Step 2: Code meta-model generation
	7.3.4 Step 3: Code meta-model assessment
	7.3.5 Step 4: Generation of optimal set of refactoring sequences

	7.4 Evaluation of EARMO
	7.4.1 Descriptive statistics of the studied Apps
	7.4.2 Research Questions
	7.4.3 Evaluation Method
	7.4.4 Results of the Evaluation

	7.5 Threats to validity
	7.6 Chapter Summary

	8 Conclusion and Recommendations
	8.1 Advancement of knowledge
	8.1.1 Improving automated refactoring using developer's task context
	8.1.2 Improving automated refactoring through efficient scheduling
	8.1.3 Improving automated refactoring by considering testing effort
	8.1.4 Improving automated refactoring of mobile apps by controlling for energy efficiency

	8.2 Recommendations and future work
	8.2.1 Automated Refactoring of testing artifacts
	8.2.2 Improving automated refactoring by considering code lexicon
	8.2.3 Evaluating the usefulness of automated approaches

	8.3 Final remarks

	REFERENCES

