
IEE
E P

ro
of

1 EARMO: An Energy-Aware Refactoring
2 Approach for Mobile Apps
3 Rodrigo Morales,Member, IEEE, Rub�en Saborido,Member, IEEE, Foutse Khomh,Member, IEEE,

4 Francisco Chicano, and Giuliano Antoniol, Senior Member, IEEE

5 Abstract—The energy consumption of mobile apps is a trending topic and researchers are actively investigating the role of coding

6 practices on energy consumption. Recent studies suggest that design choices can conflict with energy consumption. Therefore, it is

7 important to take into account energy consumption when evolving the design of a mobile app. In this paper, we analyze the impact of

8 eight type of anti-patterns on a testbed of 20 android apps extracted from F-Droid. We propose EARMO, a novel anti-pattern correction

9 approach that accounts for energy consumption when refactoring mobile anti-patterns. We evaluate EARMO using three multiobjective

10 search-based algorithms. The obtained results show that EARMO can generate refactoring recommendations in less than a minute,

11 and remove a median of 84 percent of anti-patterns. Moreover, EARMO extended the battery life of a mobile phone by up to 29 minutes

12 when running in isolation a refactored multimedia app with default settings (no Wi-Fi, no location services, and minimum screen

13 brightness). Finally, we conducted a qualitative study with developers of our studied apps, to assess the refactoring recommendations

14 made by EARMO. Developers found 68 percent of refactorings suggested by EARMO to be very relevant.

15 Index Terms—Software maintenance, refactoring, anti-patterns, mobile apps, energy consumption, search-based software engineering

Ç

16 1 INTRODUCTION

17 DURING the last five years, and with the exponential
18 growth of the market of mobile apps [1], software engi-
19 neers have witnessed a radical change in the landscape of
20 software development. From a design point of view, new
21 challenges have been introduced in the development of
22 mobile apps such as the constraints related to internal
23 resources, e.g., CPU, memory, and battery; as well as exter-
24 nal resources, e.g., internet access. Moreover, traditional
25 desired quality attributes, such as functionality and reliabil-
26 ity, have been overshadowed by subjective visual attributes,
27 i.e., “flashiness” [2].
28 Mobile apps play a central role in our life today. We use
29 them almost anywhere, at any time and for everything; e.g., to
30 check our emails, to browse the Internet, and even to access
31 critical services such as banking and health monitoring.
32 Hence, their reliability and quality is critical. Similar to tradi-
33 tional desktop applications,mobile apps age as a consequence
34 of changes in their functionality, bug-fixing, and introduction
35 of new features, which sometimes lead to the deterioration of
36 the initial design [3]. This phenomenon known as software
37 decay [4] is manifested in the form of design flaws or anti-pat-
38 terns. An example of anti-pattern is the Lazy class, which

39occurs when a class does too little, i.e., has few responsibilities
40in an app. A Lazy class typically is comprised of methods with
41low complexity and is the result of speculation in the design
42and-or implementation stage. Another common anti-pattern
43is the Blob, a.k.a., God class, which is a large and complex class
44that centralizes most of the responsibilities of an app, while
45using the rest of the classesmerely as data holders. ABlob class
46has low cohesion, and hinders software maintenance, making
47code hard to reuse and understand. Resource management is
48critical for mobile apps. Developers should avoid anti-pat-
49terns that cause battery drain. An example of such anti-pat-
50tern is Binding resources too early class [5]. This anti-pattern
51occurs when a class switches on energy-intensive components
52of amobile device (e.g.,Wi-Fi, GPS)when they cannot interact
53with the user. Another example is the use of private getters and
54setters to access class attributes in a class, instead of accessing
55directly the attributes. The Android documentation [6]
56strongly recommends to avoid this anti-pattern as virtual
57method calls are up to seven timesmore expensive than using
58direct field access [6].
59Previous studies have pointed out the negative impact of
60anti-patterns on change-proneness [7], fault-proneness [8],
61and maintenance effort [9]. In the context of mobile apps,
62Hecht et al. [10] found that anti-patterns are prevalent along
63the evolution of mobile apps. They also confirmed the
64observation made by Chatzigeorgiou and Manakos [11] that
65anti-patterns tend to remain in systems through several
66releases, unless a major change is performed on the system.
67Recently, researchers and practitioners have proposed
68approaches and tools to detect [12], [13] and correct [14]
69anti-patterns. However, these approaches only focus on
70object-oriented anti-patterns and do not consider mobile
71development concerns. One critical concern of mobile apps

� R. Morales, R. Saborido, F. Khomh, and G. Antoniol are with Polytechyni-
que Mont�eal, Montreal, QC H3T 1J4, Canada. E-mail: {rodrigo.morales,
ruben.saborido-infantes, foutse.khomh}@polymtl.ca, antoniol@ieee.org.

� F. Chicano is with the University of M�alaga, M�alaga 29016, Spain.
E-mail: chicano@uma.es.

Manuscript received 18 Sept. 2016; revised 2 Aug. 2017; accepted 25 Sept.
2017. Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Rodrigo Morales.)
Recommended for acceptance by E. Bodden.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2017.2757486

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017 1

0098-5589� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:

IEE
E P

ro
of

72 development is reducing energy consumption, due to the
73 short life-time of mobile device’s batteries. Some research
74 studies have shown that behavior-preserving code transfor-
75 mations (i.e., refactorings) that are applied to remove
76 anti-patterns can impact the energy consumption of a pro-
77 gram [15], [16], [17]. Hecht et al. [18] observed an improve-
78 ment in the user interface and memory performance of
79 mobile apps when correcting Android anti-patterns, like
80 private getters and setters, HashMap usage and member ignoring
81 method, confirming the need of refactoring approaches that
82 support mobile app developers.
83 One could argue that reducing energy consumption of an
84 app, and improving traditional quality attributes like read-
85 ability, flexibility, extendability, reusability do not arise at the
86 same time during the software development process, and it is
87 only in the compiled product that the software engineer is
88 concerned about energy efficiency. However, we surmise
89 automated refactoring as a way to support software develop-
90 ers to write “good” code, so that other developers can under-
91 stand andmaintain easily. The definition of “good” refers not
92 only to traditional quality attributes, but also energy effi-
93 ciency. Hence, the refactoring operations proposed by an
94 automated approachwill have design choices that developers
95 can learn to produce a more energy-efficient code. Once these
96 design choices have been adopted by developers, they can be
97 easily applied to different platforms. If we use a second tool in
98 a later phase (at binary code generation, for example), we run
99 the risk of wrongly assuming that (1) all energy improve-

100 ments can be performed during compilation phase, and that
101 (2) developers are not responsible of the energy efficiency of
102 their apps, i.e., developers will not consider energy efficiency
103 of apps each time they have to evolve the current design. Con-
104 sequently, the cost of maintaining two refactoring tools,
105 instead of one that considers energy and software quality in a
106 single phase is expected to be higher.
107 To address these limitations, we propose a multiobjective
108 refactoring approach called Energy-Aware Refactoring
109 approach for MObile apps (EARMO) to detect and correct
110 anti-patterns in mobile apps, while improving energy con-
111 sumption. We first study the impact of eight well-known
112 Object-oriented (OO) and Android specific (extracted from
113 Android Performance guidelines [6]) anti-patterns on energy
114 consumption. Our approach leverages information about the
115 energy cost of anti-patterns to generate refactoring sequen-
116 ces automatically. We experimentally evaluated EARMO on
117 a testbed of 20 open-source Android apps extracted from the
118 F-Droidmarketplace, an Android app repository.
119 The primary contributions of this work can be summa-
120 rized as follows:

121 1) We perform an empirical study of the impact of
122 anti-patterns on the energy consumption of
123 mobile apps. We also propose a methodology for
124 a correct measurement of the energy consumption
125 of mobile apps. Our obtained results provide evi-
126 dence to support the claim that developer’s design
127 choices can improve/decrease the energy con-
128 sumption of mobile apps.
129 2) We present a novel automated refactoring approach to
130 improve the design quality of mobile apps, while con-
131 trolling energy consumption. The proposed approach

132provides developers the best trade-off between two
133conflicted objectives, design quality and energy.
1343) We evaluate the effectiveness of EARMO using three
135different multiobjective metaheuristics from which
136EARMO is able to correct a median of 84 percent
137anti-patterns.
1384) We perform a manual evaluation of the refactoring
139recommendations proposed by EARMO for 13 apps.
140The manual evaluation is conducted in two steps. (1)
141Each refactoring operation in a sequence is validated
142and applied to the corresponding app. (2) The app is
143executed in a typical user context and the energy
144consumption gain is recorded. The sequences gener-
145ated by EARMO achieve a median precision score of
14668 percent. EARMO precision is close to previously
147published refactoring approaches (e.g., Ouni et al.
148[19] reports that Kessentini et al. [20] achieves a
149precision of 62-63 percent and Harman et al. [21]. a
150precision of 63-66 percent). In addition, EARMO
151extended the battery life by up to 29 minutes when
152running in isolation a refactored multimedia app
153with default settings (no Wi-Fi, no location services,
154minimum screen brightness).
1555) From the manual validation, we provide guidelines
156for toolsmith interested in generating automated
157refactoring tools.
1586) We perform the evaluation of the design quality of
159the refactored apps using a widely-used Quality
160Model (QMOOD) [22] and report a median improve-
161ment of 41 percent in extendibility of app’s design.
1627) We evaluate the usefulness of the solutions proposed
163by EARMO from the perspective of mobile develop-
164ers through a qualitative study and achieve an accep-
165tance rate of 68 percent. These results complement
166the manual verification in terms of precision and
167design quality (e.g., extendability, reusability), and
168serve as external evaluation.
169The Remainder of this Paper is Organized as Follows. Section 2
170provides some background information on refactoring,
171energy measurement of mobile apps, and multiobjective opti-
172mization. Section 3 presents a preliminary study regarding
173the impact of anti-patterns on energy consumption. In
174Section 4, we present our automated approach for refactoring
175mobile apps while Section 5 describes the experimental set-
176ting for evaluating the proposed approach and present and
177discuss the results obtained from our experiments. In
178Section 6, we discuss the threats to the validity of our study,
179while in Section 7 we relate our work to the state of the art.
180Finally, we present our conclusions and highlight directions
181for futurework in Section 8.

1822 BACKGROUND

183This section presents an overview of the main concepts used
184in this paper.

1852.1 Refactoring

186Refactoring, a software maintenance activity that transforms
187the structure of a code without altering its behavior [23], is
188widely used by software maintainers to counteract the
189effects of design decay due to the continuous addition of

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of

190 new functionalities or the introduction of poor design
191 choices, i.e., anti-patterns, in the past [3]. The process of
192 refactoring requires the identification of places where code
193 should be refactored (e.g., anti-patterns). Developers also
194 have to determine which kind of refactoring operations can
195 be applied to the identified locations. This step is cumber-
196 some, as different anti-patterns can have different impact
197 on the software design. Moreover, some refactoring opera-
198 tions can be conflicting, hence, finding the best combination
199 of refactorings is not a trivial task. More formally, the possi-
200 ble number of sequences generated from a list of refactor-
201 ings is jSj ¼ e � n!b c8n � 1; jSj ¼ 1; n ¼ 0. Where jSj is the
202 possible number of refactoring sequences (size of the search
203 space), and n is the number of available refactoring opera-
204 tions (the list of refactoring operations available at the
205 beginning of the search) [24], which results in a large space
206 of possible solutions to be explored exhaustively. Therefore,
207 researchers have reformulated the problem of automated-
208 refactoring as a combinatorial optimization problem and
209 proposed different techniques to solve it. The techniques
210 range from single-objective approaches using local-search
211 metaheuristics, e.g., hill climbing, and simulated anneal-
212 ing [25], [26], to evolutionary techniques like genetic
213 algorithm, and multiobjective approaches: e.g., NSGA-II
214 and MOGA [27], [28], [29], [30]; MOCell, NSGA-II, and
215 SPEA2 [31].
216 Recent works [16], [32] have provided empirical evidence
217 that software design plays also an important role in the
218 energy consumption of mobile devices; i.e., high-level
219 design decisions during development and maintenance
220 tasks impact the energy consumption of mobile apps. More
221 specifically, these research works have studied the effect of
222 applying refactorings to a set of software systems; compar-
223 ing the energy difference between the original and refac-
224 tored code.
225 In this research, we propose an automated-refactoring
226 approach for refactoring mobile apps while controlling for
227 energy consumption. We target two categories of anti-
228 patterns: (i) anti-patterns that stem from common Object-
229 oriented design pitfalls [33], [34] (i.e., Blob, Lazy Class,
230 Long-parameter list, Refused Bequest, and Speculative
231 Generality) and (ii) anti-patterns that affect resource usages
232 as discussed by Gottschalk [32] and in the Android docu-
233 mentation [6], [32] (i.e., Binding Resources too early, Hash-
234 Map usage, and Private getters and setters). We believe that
235 these anti-patterns occur often and could impact the energy
236 consumption of mobile apps. In the following sections, we
237 explain how we measure and include energy consumption
238 in our proposed approach.

239 2.2 Energy Measurement of Mobile Apps

240 Energy consumption, a critical concern for mobile and
241 embedded devices, has been typically targeted from the
242 point of view of hardware and lower-architecture layers by
243 the research community. Energy is defined as the capacity
244 of doing work while power is the rate of doing work or the
245 rate of using energy. In our case, the amount of total energy
246 used by a device within a period of time is the energy con-
247 sumption. Energy (E) is measured in joules (J) while power
248 (P) is measured in watts (W). Energy is equal to power times
249 the time period T in seconds. Therefore, E ¼ P � T . For

250instance, if a task uses two watts of power for five seconds it
251consumes 10 Joules of energy.
252One of the most used energy hardware profilers is the
253Monsoon Power Monitor.1 It provides a power measurement
254solution for any single lithium (Li) powered mobile device
255rated at 4.5 volts (maximum three amps) or lower. It sam-
256ples the energy consumption of the connected device at
257a frequency of 5 kHz, therefore a measure is taken each
2580.2 milliseconds. Other works use the LEAP power mea-
259surement device [35]. LEAP contains an ATOM processor
260that runs Android-x86 version 2.x. Its analog-to-digital
261converter samples CPU energy consumption at a frequency
262of 10 kHz.
263In this work energy consumption is measured using a
264more precise environment. Specifically we use a digital
265oscilloscope TiePie Handyscope HS5 which offers the LibTie-
266Pie SDK, a cross platform library for using TiePie engineer-
267ing USB oscilloscopes through third party software. We use
268this device because it allows to measure using higher fre-
269quencies than the Monsoon and LEAP. The mobile phone is
270powered by a power supply and, between both, we connect,
271in series, a uCurrent2 device, which is a precision current
272adapter for multimeters converting the input current (I) in
273a proportional output voltage (Vout). Knowing I and the
274voltage supplied by the power supply (Vsup), we use the
275Ohm’s Law to calculate the power usage (P) as P ¼ Vsup � I.
276The resolution is set up to 16 bits and the frequency to
277125 kHz, therefore a measure is taken each eight microsec-
278onds. We calculate the energy associated to each sample as
279E ¼ P � T ¼ P � ð8 � 10�6Þs. Where P is the power of the
280smart-phone and T is the period sampling in seconds. The
281total energy consumption is the sum of the energy associ-
282ated to each sample.
283A low sampling frequency can make it very hard to
284assess the energy consumption of any given method. Con-
285sider, for example, the glTron3 application. According to our
286measurements, the method com.glTron.Video.HUD.

287draw has an execution time (inclusive of called methods) of
28891.96 milliseconds. Thus, sampling at 125 kHz (one sample
289each eight microseconds) or 10 kHz (one sample each 0.1
290milliseconds) does not make a big difference as enough data
291points will be collected. However, if we consider for the
292same package (com.glTron) the method ...Video.

293GraphicUtils.ConvToFloatBuffer, its execution lasts
294only 732 microseconds. Measuring at 10 kHz, limits the col-
295lection of data points about this method to no more than 7
296samples, while measuring at 125 kHz we could collect data
297points up to 92 samples. In essence, if a method execution
298last more than one millisecond, such as in com.glTron.

299Video.HUD.draw, the errors will generally averaged out,
300making the energy estimation error low or even negligible.
301However, in methods of short duration (less than one mil-
302lisecond) the error may be higher. Li et al. [36] studied
303what granularity of measurements is sufficient for measur-
304ing energy consumption. They concluded that nanosecond
305level measurement is sufficient to capture all API calls and
306methods. This raises another problem, the bottleneck in

1. https://www.msoon.com/LabEquipment/PowerMonitor/
2. http://www.eevblog.com/projects/ucurrent/
3. https://f-droid.org/wiki/page/com.glTron

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 3

https://www.msoon.com/LabEquipment/PowerMonitor/
http://www.eevblog.com/projects/ucurrent/

IEE
E P

ro
of307 high-frequency power sampling due to the storage system,

308 which cannot save power samples at the same frequency
309 as the power meter can generate them. However, Saborido
310 et al. [37] found that sampling at 125 kHz just accounts for
311 about 0.7 percent underestimation error. Therefore we con-
312 sider that 125 kHz is sufficient to measure the energy con-
313 sumption of mobile applications.
314 In our experiments, we used a LG Nexus 4 Android
315 phone equipped with a quad-core CPU, a 4.7-inch screen
316 and running the Android Lollipop operating system (ver-
317 sion 5.1.1, Build number LMY47V). We believe that this
318 phone is a good representative of the current generation of
319 Android mobile phones because more than three million
320 have been sold since its release in 2013,4 and the latest ver-
321 sion of Android Studio includes a virtual device image of it
322 for debugging.
323 We connect the phone to an external power supplier
324 which is connected to the phone’s motherboard, thus we
325 avoid any kind of interference with the phone battery in our
326 measurements. The diagram of the connection is shown in
327 Fig. 1. Note that although we use an external power sup-
328 plier, the battery has to be connected to the phone to work.
329 Hence, we do not connect the positive pole of the battery
330 with the phone.
331 To transfer and receive data from the phone to the com-
332 puter, we use a USB cable, and to avoid interference in our
333 measurements as a result of the USB charging function, we
334 wrote an application to disable it.5 This application is free
335 and it is available for download in the Play Store.6

336 2.3 Multiobjective Optimization

337 Optimization problems with more than one objective do
338 not have single solutions because the objectives are usually
339 in conflict. Consequently, the goal is to find solutions that
340 represent a good compromise between all objectives with-
341 out degrading any of them. These solutions are called non-
342 dominated, in the sense that there are no solutions which
343 are better with respect to one of the objective functions
344 without achieving a worse value in at least another one.
345 More formally, let y1 and y2 be two solutions, for a multi-
346 objective maximization problem, and fi; i 2 1 . . .n the set
347 of objectives. The solution y1 dominates y2 if: 8i; fiðy2Þ �
348 fiðy1Þ; and 9jjfjðy2Þ < fjðy1Þ.
349 The use ofmultiobjective algorithms have shown to be use-
350 ful in finding good solutions in a search space. There is even a
351 procedure called multi-objectivization that transforms a sin-
352 gle-objective problem into a multiobjective one, by adding
353 some helper functions [38]. Hence, the use of a multiobjective

354optimization techniques is suitable to solve the refactoring
355scheduling problem as they lessen the need for complex com-
356bination of different, potentially conflicting, objectives and
357allows software maintainers to evaluate different candidate
358solutions to find the best trade.
359The set of all non-dominated solutions is called the Par-
360eto Optimal Set and its image in the objective space is called
361Pareto Front. Very often, the search of the Pareto Front is
362NP-hard [39], hence researchers focus on finding an approx-
363imation set or reference front (RF) as close as possible to the
364Pareto Front.
365As our aim is to improve the design quality of mobile
366apps, while controlling for energy consumption, we con-
367sider each one of these criteria as a separate objective to
368fulfill.
369In this work we use Evolutionary Multiobjective Optimi-
370zation (EMO) algorithms, a family of metaheuristics
371techniques that are known to perform well handling multi-
372objective optimization problems [40]. To assess the effec-
373tiveness of our proposed automated-refactoring approach,
374we conduct a case study with three different EMO algo-
375rithms and compare their results in terms of performance,
376using two well-known performance indicators, to provide
377developers with information about the benefits and limita-
378tions of these different alternatives. In the following, we
379describe the metaheuristics techniques used in this paper,
380and in Section 4 we explain how we adapt them to find the
381best compromise between design quality and energy con-
382sumption dimensions.
383The Non-dominated sorting genetic algorithm (NSGA-
384II) [41] proceeds by evolving a new population from an ini-
385tial population, applying variation operators like crossover
386and mutation. Then, it merges the candidate solutions
387from both populations and sort them according to their
388rank, extracting the best candidates to create the next
389generation. If there is a conflict when selecting individuals
390with the same ranking, the conflict is solved using a
391measure of density in the neighborhood, a.k.a., crowding
392distance.
393The Strength Pareto Evolutionary Algorithm 2 (SPEA2) [42]
394uses variation operators to evolve a population, like NSGA-
395II, but with the addition of an external archive. The archive is
396a set of non-dominated solutions, and it is updated during
397the iteration process to maintain the characteristics of the
398non-dominated front. In SPEA2, each solution is assigned a
399fitness value that is the sum of its strength fitness plus
400a density estimation.
401The Multiobjective Cellular Genetic Algorithm (MOCell) is a
402cellular algorithm [43], that includes an external archive like
403SPEA2 to store the non-dominated solutions found during
404the search process. It uses the crowding distance of NSGA-
405II to maintain the diversity in the Pareto front. Note that the
406version used in this paper is an asynchronous version of
407MOCell called aMOCell4 [44]. The selection consists in
408taking individuals from the neighborhood of the current
409solution (cells) and selecting another one randomly from
410the archive. After applying the variation operators, the new
411offspring is compared with the current solution and repla-
412ces the current solution if both are non-dominated, other-
413wise the worst individual in the neighborhood will be
414replaced by the offspring.

Fig. 1. Connection between power supply and the Nexus 4 phone.

4. https://goo.gl/6guUpf
5. The mobile phone has to be rooted first.
6. https://goo.gl/wyUcdD

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

https://goo.gl/6guUpf
https://goo.gl/wyUcdD

IEE
E P

ro
of

415 3 PRELIMINARY STUDY

416 The main goal of this paper is to propose a novel approach
417 to improve the design of mobile apps while controlling
418 for energy consumption. To achieve this goal, the first step
419 is to measure the impact of anti-patterns (i.e., poor design
420 choices) on energy consumption. Understanding if anti-
421 patterns affect the energy consumption of mobile apps is
422 important for researchers and practitioners interested in
423 improving the design of apps through refactoring. Specifi-
424 cally, if anti-patterns do not significantly impact energy con-
425 sumption, then it is not necessary to control for energy
426 consumption during a refactoring process. On the other
427 hand, if anti-patterns significantly affect energy consump-
428 tion, developers and practitioners should be equipped with
429 refactoring approaches that control for energy consumption
430 during the refactoring process, in order to prevent a deterio-
431 ration of the energy efficiency of apps.
432 We formulate the research questions of this preliminary
433 study as follows:
434 (PQ1) Do anti-patterns influence energy consumption?
435 The rationale behind this question is to determine if the
436 energy consumption of mobile apps with anti-patterns dif-
437 fers from the energy consumption of apps without anti-
438 patterns. We test the following null hypothesis: H01 : there is
439 no difference between the energy consumption of apps containing
440 anti-patterns and apps without anti-patterns.
441 (PQ2)Do anti-pattern’s types influence energy consumption
442 differently?
443 In this research question, we analyze whether certain
444 types of anti-patterns lead to more energy consumption
445 than others. We test the following null hypothesis: H02 : there
446 is no difference between the energy consumption of apps contain-
447 ing different types of anti-patterns.

448 3.1 Design of the Preliminary Study

449 As mentioned earlier, we consider two categories of anti-
450 patterns: (i) Object-oriented (OO) anti-patterns [33], [34], and
451 (ii) Android anti-patterns (AA) defined by [6], [32]. Concern-
452 ing (AA), previous works have evaluated the impact on
453 energy consumption of private getter and setters [45], [46],
454 [47] and found an improvement in energy consumption
455 after refactoring. Table 1 presents the details of the consid-
456 ered anti-patterns types an the refactoring strategies used to
457 remove them. We select these anti-patterns because they
458 have been found in mobile apps [10], [18], and they are well
459 defined in the literature with recommended steps to remove
460 them [6], [32], [33], [34].
461 To study the impact of the anti-patterns, we write a web
462 crawler to download apps from F-droid , an open-source
463 Android app repository.7 The total number of apps
464 retrieved by the date of April 14th 2016 is 200. These apps
465 come from five different categories (Games, Science and
466 Education, Sports and health, Navigation, and Multimedia).
467 We filtered out 47 apps which Android version is lower
468 than 2.1 because our transformation environment runs Win-
469 dows 10 which supports Android SDK 2.1 or higher.
470 From the remaining 153 apps, we take a random sample
471 that was determined using common procedures in survey

472design, with a confidence interval of 10 percent and a confi-
473dence level of 95 percent. Using these values, we obtained
474that the required sample size is 59 apps. This means that the
475results we get from our empirical study have an error at
476most of 10 percent with probability 0.95.
477Next, we filtered apps where libraries referenced are
478missing or incomplete; apps that required to have username
479and password for specific websites; apps written in foreign
480languages and that we could not fully understand their
481functionality; apps that does not compile; apps that crashed
482in the middle of execution, or simply would not run in our
483phone device. The last filter is that the selected apps should
484contain at least one instance of any of the anti-patterns
485studied.
486After discarding the apps that do not respect the selec-
487tion criteria, we end-up with a dataset of 20 apps. Table 2
488shows the selected apps.

4893.2 Data Extraction

490The data extraction process is comprised of the following
491steps, which are summarized in Fig. 2.

4921) Extraction of android apps. We wrote a script to down-
493load the apps from F-droidrepository. This script pro-
494vides us with the name of the app, the link to the
495source code, Android API version, and the number of
496Java files. We use the API version to discriminate
497apps that are not compatible with our phone, and the
498number of Java files to filter apps with only one class.
499After filtering the apps, we import the source code in
500Eclipse (for the older versions) or Android Studio
501and ensure that they can be compiled and executed.
5022) Detection of anti-patterns and refactoring candidates. The
503detection and generation of refactoring candidates is
504performed using our previous automated approach
505ReCon [49]. We use ReCon’s current implementation
506for correcting object-oriented anti-patterns, and add
507two new OO anti-patterns (Blob and Refused bequest);
508we also add three Android anti-patterns based on
509the guidelines defined by Gottschalk [32], and the
510Android documentation [6]. ReCon supports two
511modes, root-canal (i.e., to analyze all the classes in
512the system) and floss-refactoring (i.e., to analyze
513only the classes related to an active task in current
514developer’s workspace provided by a task manage-
515ment integration plug-in). We use the root-canal
516mode as we are interested in improving the complete
517design of the studied apps.
5183) Generation of scenarios. For each app we define a sce-
519nario that exercises the code containing anti-pat-
520terns using the Android application HiroMacro.8

521This software allows us to generate scripts contain-
522ing touch and move events, imitating a user inter-
523acting with the app on the phone, to be executed
524several times without introducing variations in exe-
525cution time due to user fatigue, or skillfulness. To
526automatize the measurement of the studied apps
527we convert the defined scenarios (HiroMacroscripts)

7. https://f-droid.org/
8. https://play.google.com/store/apps/details?id=com.prohiro.

macro

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 5

https://f-droid.org/
https://play.google.com/store/apps/details?id=com.prohiro.macro
https://play.google.com/store/apps/details?id=com.prohiro.macro

IEE
E P

ro
of

TABLE 2
Apps Used to Conduct the Preliminary Study

App Version LOC Category Description

blackjacktrainer 0.1 3,783 Games Learning BlackJack
calculator 5.1.1 13,985 Science & Education Make calculations
gltron 1.1.2 12,074 Games 3D lightbike racing game
kindmind 1.0.0 6,555 Sports & Health Be aware of sad feelings and unmet needs
matrixcalc 1.5 2,416 Science & Education Matrix calculator
monsterhunter 1.0.4 27,368 Games Reference for Monster Hunter 3 game
mylocation 1.2.1 1,146 Navigation Share your location
oddscalculator 1.2 2,226 Games Bulgarian card game odds calculator
prism 1.2 4,277 Science & Education Demonstrates the basics of ray diagrams
quicksnap 1.0.1 18,487 Multimedia Basic camera app
SASAbus 0.2.3 9,349 Navigation Bus schedule for South Tyrol
scrabble 1.2 3,165 Games Scrabble in french
soundmanager 2.1.0 5,307 Multimedia Volume level scheduler
speedometer 1 139 Navigation Simple Speedometer
stk 0.3 4,493 Games A 3D open-source arcade racer
sudowars 1.1 22,837 Games Multiplayer sudoku
swjournal 1.5 5,955 Sports & Health Track your workouts
tapsoffire 1.0.5 19,920 Games Guitar game
vitoshadm 1.1 567 Games Helps you to make decisions
words 1.6 7,125 Science & Education Helps to study vocabulary for IELTS exam

TABLE 1
List of Studied Anti-Patterns

Type Description Refactoring(s) strategy

Object-oriented anti-patterns

Blob (BL) [33] A large class that absorbs most of the functionality of the
system with very low cohesion between its constituents.

Move method (MM). Move the methods that does
not seem to fit in the Blob class abstraction to
more appropriate classes [26].

Lazy Class
(LC) [34]

Small classes with low complexity that do not justify their
existence in the system.

Inline class (IC). Move the attributes and methods
of the LC to another class in the system.

Long-parameter
list (LP) [34]

A class with one or more methods having a long list of
parameters, specially when two or more methods are shar-
ing a long list of parameters that are semantically connected.

Introduce parameter object (IPO). Extract a new
class with the long list of parameters and replace
the method signature by a reference to the new
object created. Then access to this parameters
through the parameter object

Refused Bequest
(RB) [34]

A subclass uses only a very limited functionality of the par-
ent class.

Replace inheritance with delegation (RIWD).
Remove the inheritance from the RB class and
replace it with delegation through using an object
instance of the parent class.

Speculative
Generality
(SG) [34]

There is an abstract class created to anticipate further fea-
tures, but it is only extended by one class adding extra com-
plexity to the design.

Collapse hierarchy (CH). Move the attributes and
methods of the child class to the parent and
remove the abstractmodifier.

Android anti-patterns
Binding Resour-
ces too early
(BE) [32]

Refers to the initialization of high-energy-consumption com-
ponents of the device, e.g., GPS, Wi-Fi before they can be
used.

Move resource request to visible method (MRM).
Move the method calls that initialize the devices
to a suitable Android event. For example, move
method call for requestlocationUpdates,
which starts GPS device, after the device is visible
to the app/user (OnResumemethod).

HashMap usage
(HMU) [18]

From API 19, Android platform provides ArrayMap [48]
which is an enhanced version of the standard Java HashMap-
data structure in terms of memory usage. According to
Android documentation, it can effectively reduce the growth
of the size of these arrays when used in maps holding up to
hundreds of items.

Replace HashMap with ArrayMap (RHA). Import
ArrayMap and replace HashMap declarations
with ArrayMap data structure.

Private getters
and setters
(PGS) [6], [18]

Refers to the use of private getters and setters to access a
field inside a class decreasing the performance of the app
because of simple inlining of Android virtual machinea that
translates this call to a virtual method called, which is up to
seven times slower than direct field access.

Inline private getters and setters (IGS). Inline the
private methods and replace the method calls
with direct field access.

ahttps://source.android.com/devices/tech/

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

https://source.android.com/devices/tech/

IEE
E P

ro
of

528 to Monkeyrunnerformat. Thus, the collected actions
529 can be played automatically from a script using the
530 Monkeyrunner [50] Android tool. In Table 3 we pro-
531 vide a brief description of each scenario. Note that
532 the scenarios are generated with the main objective
533 of executing the code segment(s) related to the anti-
534 patterns in the original version, and the refactorings
535 applied in the refactored version, and as a dis-
536 claimer, many of them may seem trivial, but fit for
537 the purpose of this preliminary study.
538 4) Refactoring of mobile apps. We use Android Studio and
539 Eclipse refactoring-tool-support for applying the
540 refactorings suggested by ReCon. For the cases where
541 there is no tool support, we applied the refactorings
542 manually into the source code. Currently, there is no
543 tool support for refactoring Binding resources too ear-
544 lyand Hashmap usage. To ensure that a refactored
545 code fragment is executed in the scenario, we first
546 set breakpoints to validate that the debugger stops
547 on it. If this occurs, we build the corresponding apk
548 and check that method invocations to the refactored

549code appeared in the execution trace. To activate the
550generation of execution trace file, we use the meth-
551ods provided in Android Debug Class [51], for both
552original and refactored versions. The trace file con-
553tains information about all the methods executed
554with respect to time, that we use in the next step.
5555) Measurement of energy consumption. As we mention in
556Section 2, we measure energy consumption of mobile
557apps using a precise digital oscilloscope TiePie Han-
558dyscope HS5which allows us to measure using high
559frequencies and directly storing the collected results
560to the personal computer at runtime.
561In our experiments each app is run 30 times to get
562median results and, for each run, the app is unin-
563stalled after its usage and the cache is cleaned. A
564description of the followed steps is given in Algo-
565rithm 1, which has been implemented as a Python
566script. As it is described, all apps are executed before
567a new run is started. Thus, we aim to avoid that cache
568memory on the phone stores information related to
569the app run that can cause to run faster after some
570executions. In addition, before the experiments, the
571screen brightness is set to theminimum value and the
572phone is set to keep the screen on. In order to avoid
573any kind of interferences during the measurements,
574only the essential Android services are run on the
575phone (for example, we deactivate Wi-Fi if the app
576does not require it to be correctly executed, etc.).
577Our script starts the oscilloscope and the app,
578which wemodify to generate the execution trace. Both
579are different fileswhere the first time-stamp is zero.
580Whenusers launch an app, the app goes through an
581initialization process running themethods onCreate,
582onStart , and onResume . In Fig. 3 we present a sim-
583plified flow-chart of the state paths of a single-activity
584Android app. The app is visible after the onStart

Fig. 2. Data extraction process.

TABLE 3
Description and Duration (in Seconds) of Scenarios Generated

for the Studied Apps in Our Preliminary Study

App Scenario Duration

blackjacktrainer Press in {. . .}, then {settings}, and close app. 14.87
Calculator Make the operation six times five and

close app.
17.94

GLTron Wait until app is loaded and close app. 33.94
kindmind Press in first category and close app. 21.37
matrixcalc Fill matrix with number five, press

{Calculate}, and close app.
52.47

monsterhunter Press in {Weapons}, press in first category,
select first weapon, press the {+} button,
select the {MyWishlist}, press {Ok}, and
close the app.

16.39

mylocation Press the square button, go back, and close
app.

15.59

oddscalculator Wait until app is loaded and close app. 15.72
prism Wait until app is loaded and close app. 10.84
quicksnap Wait until app is loaded and close app. 13.8
SASAbus Wait until DB is downloaded, press {OK}

button, wait until maps are downloaded,
and close app.

71.72

scrabble Wait to load board and close app. 35.83
soundmanager Go to menu, mute/unmute, and close app. 18.74
speedometer Wait until app is loaded and close app. 13.99
stk Wait until app is loaded and content

downloaded and close app.
35.1

sudoWars Wait until app is loaded and close app. 10.76
swjournal Start a workout, filling the two fields, and

close app.
28.87

tapsoffire Press in {Play}, slide down, press over the
green color, press {Play}, {API}, {Medium},
and {Play}; close app.

25.96

vitoshadm Wait until app is loaded and close app. 14.78
words Wait until app is loaded and close app. 10.75

Fig. 3. Android app flow-chart.

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 7

IEE
E P

ro
of

585 method is executed and the user can interact with the
586 app after the onResumemethod is executed. We con-
587 sider that an Android app is completely loaded after
588 methodonResume ends. The times reported inTable 3
589 are the times required to completely load each app and
590 run the corresponding scenario. For all scenarios, the
591 last action of the scenario is to manually close the app,
592 which takes between three and five seconds.
593 Additionally, the generated execution traces con-
594 tain, for each method call, global execution times rela-
595 tive to the complete load of apps (whose global time is
596 zero). Based on that we consider the global start time
597 of the method onCreate as the instant of time when
598 the execution trace is created once the app is launched.
599 In order to estimate the existing gap between
600 energy and execution traces we do the following.
601 Once we start the oscilloscope we introduce a timer
602 to measure the time needed to launch an Android
603 app. We consider the difference between this time
604 and the time when the method onCreate is exe-
605 cuted as the gap between energy and execution
606 traces. For instance, if we consider that an Android
607 app is launched in T seconds and the execution
608 trace is created in instant of time N , the existing
609 gap between the energy and execution trace is cal-
610 culated as T �N . Because for each app’s run we
611 know the time required to launch the app and
612 when the method onCreate is executed, the gap
613 between traces for each app’s run is known.
614 According to our experiments Android apps are
615 launched in the range of [0.76, 0.92] seconds (average
616 0.83 seconds = 830000 microseconds) and the method
617 onCreate is executed, on average, 0.00009 seconds
618 (90 microseconds) after the app is launched. It means
619 that, in average, the existing gap is (830000-90) =
620 829010 microseconds. For each apps independent
621 run, energy and execution traces are aligned consid-
622 ering the estimated gap shift.
623 When the oscilloscope is started it begins to store
624 in memory energy measurements which are written
625 to a Comma Separated Values (CSV) file when the sce-
626 nario associated to the app finishes. Once Algorithm
627 1 finishes, we have two files for each app and run: the
628 energy trace and the execution trace. Using the exist-
629 ing timestamp in energy traces and the starting and
630 ending time of methods calls in execution traces,
631 energy consumption is calculated for each method
632 called and this information is saved in a new CSV file
633 for each app and run. From these files, we filtered out
634 method names that does not belong to the namespace
635 of the app. For example, for Calculator app, the main
636 activity is located in the package com.android2.

637 calculator3 , and we only consider the methods
638 included in this package as they correspond to the
639 source code that we analyze to generate refactoring
640 opportunities. The rationale of removing energy con-
641 sumption of code that is not inside the package of the
642 app is that we did not detect anti-patterns, neither
643 propose refactoring for those classes. Hence, with the
644 aim of removing noise in our measurements (in case
645 that most of an app’s energy consumption is on the

646library or native functions) we focus on the code that
647contains anti-patterns, to isolate the effect of applying
648refactoring on energy consumption. Finally, the
649median and average energy consumption of each app
650over the 30 runs is calculated.
651652

653Algorithm 1. Steps to Collect Energy Consumption

6541 for all runs do
6552 for all apps do
6563 Install app in the phone (using adb).
6574 Start oscilloscope using a script from our test PC.
6585 Run app (using adb).
6596 Play scenario (usingMonkeyrunner).
6607 Stop oscilloscope.
6618 Download execution trace from the phone (using adb).
6629 Stop app (using adb).
66310 Clean app files in the phone (using adb).
66411 Uninstall app (using adb).
66512 end
66613 end

6673.3 Data Analysis

668In the following we describe the dependent and indepen-
669dent variables of this preliminary study, and the statistical
670procedures used to address each research question. For all
671statistical tests, we assume a significance level of 5 percent.
672In total we collected 864 GB of data from which 391 GB cor-
673respond to energy traces, 329 GB to execution traces. The
674amount of data generated from computing the energy con-
675sumption of methods calls using these traces is 144 GB.
676(PQ1). Do Anti-Patterns Influence Energy Consumption?
677For PQ1, the dependent variable is the energy consumption
678for each app version (original, refactored). The independent
679variable is the existence of any of the anti-patterns studied,
680and it is true for the original design of the apps we studied,
681and false otherwise. We statistically compare the energy
682consumption between the original and refactored design
683using a non-parametric test, Mann-Whitney U test. Because
684we do not know beforehand if the energy consumption will
685be higher in one direction or in the other, we perform a two-
686tailed test. For estimating the magnitude of the differences
687of means between original and refactored designs, we use
688the non-parametric effect size measure Cliff’s d (ES), which
689indicates the magnitude of the effect size [52] of the treat-
690ment on the dependent variable. The effect size is small for
6910.147 � ES < 0.33, medium for 0.33 � ES < 0.474, and
692large for ES � 0.474 [53].
693(PQ2). Do Anti-Pattern’s Types Influence Energy Consump-
694tion Differently?
695For PQ2 , we follow the same methodology as PQ1. For
696each type of anti-pattern, we have three different apps con-
697taining an instance of the anti-pattern. We refactor these
698apps to obtain versions without the anti-pattern. We mea-
699sure the energy consumption of the original and refactored
700versions of the apps 30 times to obtain the values of the
701dependent variable. The independent variable is the existence of
702the type of anti-pattern.

7033.4 Results and Discussion of the Preliminary Study

704In Table 4 we present the percentage change in median
705energy consumption after removing one instance of anti-

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of

706 pattern at time, gðE0; E0Þ. This value is calculated using the
707 following expression

gðE0; E0Þ ¼ medðE0Þ �medðE0Þ
medðE0Þ � 100: (1)

709709

710 Where the energy consumption of the app after removing
711 an anti-pattern is represented by E0, while the energy con-
712 sumption of the original app is E0. medðEÞ is the median of

713the energy consumption values of the 30 independent runs.
714Negative values indicate a reduction of energy consumption
715after refactoring, positive values indicate an increase of
716energy consumption. In total, we manually correct 24 anti-
717patterns inside the set of apps that make up our testbed. In
718seven instances (i.e., 30 percent) the differences are statisti-
719cally significant, with Cliff’s d effect sizes ranging from
720small to large. Specifically, we obtained three apps with
721large effect size: speedometer, gltron, and soundmanager(two
722types of anti-patterns); two cases with medium effect size:
723oddscalculator, words; and one with small effect size, vitosh-
724adm. Therefore we rejectH01 for these seven apps.

725Overall, our results suggest that different types of anti-pat-
726terns may impact the energy consumption of apps differently.
727Our next research question (i.e., PQ2) investigates this
728hypothesis in more details.

729To answer PQ2 , on the impact of different types of anti-
730patterns on energy consumption, we present in Fig. 4 the per-
731centage change of the energy consumption after removing
732each type of anti-pattern studied. For the instances where the
733results are statistically significant (p-value < 0:05) we add an
734“�” symbol, the exact value andES is shown in Table 4.
735Regarding object-oriented (OO) anti-patterns, on top of
736Fig. 4, we observe that removing lazy class reduces energy
737consumption in blackJacktrainer. This trend holds for tapsof-
738fire and soundmanager respectively, with the latter one hav-
739ing statistically significance and magnitude of the difference
740(i.e., ES) is large. In the case of Refused Bequest , two out of
741three apps show that removing the anti-pattern saves
742energy, and the difference is statistically significant for
743vitoshadm. For the Blob anti-pattern, all refactored versions
744report a decrease in energy consumption, though the differ-
745ences are not statistically significant.
746Concerning Long Parameter list (LP), and Speculative
747Generality (SG), both report a negative impact on energy

TABLE 4
Percentage Change in Median Energy Consumption of Apps
After Removing One Instance of Anti-Pattern at Time, Mann—

Whitney U Test and Cliff0s d Effect Size (ES)

App gðE0; E0Þ p-value ES Magnitude

blackjacktrainer �0.63 0.2560 �0.15 small
calculator �1.17 0.1191 �0.25 small
calculator �0.90 0.4280 �0.10 negligible
gltron �1.60 2.08E-05 �0.70 large
kindmind 0.68 0.2988 0.16 small
matrixcalc 0.56 0.4898 0.09 negligible
monsterhunter 0.50 0.5602 �0.07 negligible
mylocation �1.56 0.5699 �0.03 negligible
oddscalculator �6.01 0.0221 �0.34 medium
prism 1.50 0.0919 0.17 small
prism �0.03 0.7151 0.03 negligible
quicksnap �0.07 0.9515 �0.03 negligible
quicksnap 0.89 0.4898 0.04 negligible
SASAbus �4.12 0.2286 �0.13 negligible
scrabble �0.67 0.9838 �0.04 negligible
soundmanager �8.38 0.0001 �0.63 large
soundmanager �5.96 0.0005 �0.53 large
speedometer �62.96 3.73E-09 �0.97 large
stk 0.38 0.5028 0.02 negligible
sudowars �0.82 0.6408 0.04 negligible
swjournal �2.21 0.2286 �0.23 small
tapsoffire �3.52 0.3599 �0.22 small
vitoshadm �2.80 0.0345 �0.29 small
words �2.29 0.0005 �0.44 medium

Fig. 4. Percentage change in median energy consumption when removing different types of anti-patterns.

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 9

IEE
E P

ro
of

748 consumption after refactoring.While for LP, all the apps point
749 toward more energy consumption, in the case of SG, the
750 energy consumption is increased in two out of three apps after
751 refactoring. We explain the result obtained for LP by the fact
752 that the creation of a new object (i.e., the parameter object that
753 contains the long list of parameters) adds to some extentmore
754 memory usage. For SGwedonot have a plausible explanation
755 for this trend. For both anti-patterns, the obtained differences
756 in energy consumption is not statistically significant, hence
757 we cannot conclude that these two anti-patterns always
758 increase or decrease energy consumption.
759 Regarding Android Anti-Patterns. For HashMap usage
760 (HMU) and Private getters and setters (PGS), we obtained sta-
761 tistically significant results for two apps. For Binding Resour-
762 ces too early (BE), the result is statistically significant for one
763 app. In all cases, apps that contained these anti-patterns con-
764 sumed more energy than their refactored versions that did
765 not contained the anti-patterns. This finding is consistent
766 with the recommendation of previous works (i.e., [5], [6])
767 that advise to remove HMU, PGS, and BE from Android
768 apps, because of their negative effects on energy consump-
769 tion. Note that the amount of energy saved is influenced by
770 the context in which the application runs. For example,
771 SASAbus , which is a bus schedule app, downloads the latest
772 bus schedule at start, consuming a considerable amount of
773 data and energy. As a result, the gain in energy for relocating
774 the call method that starts the GPS device is negligible in
775 comparison to the overall scenario. Mylocation is a simpler
776 app, that only provides the coordinated position of mobile
777 user. This app optimizes the use of the GPS device by dis-
778 abling several parameters, like altitude and speed. It also
779 sets the precision to coarse (approximate location [54], and
780 the power requirements to low. For this app, we observe a
781 consistent improvement when the anti-pattern is removed,
782 but in a small amount. On the other hand, we have speedome-
783 ter , which is a simple app as well, that measures user’s
784 speed, but using high precision mode. High precision mode uses
785 GPS and internet data at the same time to estimate location
786 with high accuracy. In speedometer , we observe a high reduc-
787 tion in energy consumption when the anti-pattern is cor-
788 rected, in comparisonwith the previous two apps.

789 In summary, there is evidence to show that removing Binding
790 resources too early, Private getters and setters, Refused
791 Bequest, and Lazy class anti-patterns can improve energy effi-
792 ciency in some cases. We do not find any statistically signifi-
793 cant cases were removing an anti-pattern increases energy
794 consumption. Removing Blob, Long Parameter List, and Spec-
795 ulative Generality anti-patterns does not produce a statisti-
796 cally significant increase or decrease.

797 The impact of different types of anti-patterns on the
798 energy consumption of mobile apps is not the same. Hence,
799 we rejectH02.

800 4 ENERGY-AWARE AUTOMATED REFACTORING OF

801 MOBILE APPS

802 After determining in Section 3 that the occurrence of anti-
803 patterns impacts the energy consumption of mobile apps,
804 we leverage this knowledge to propose an approach to

805improve the design quality of mobile apps, while control-
806ling energy consumption. Our proposed approach is based
807on a search-based process where we generate refactoring
808sequences to improve the design of an app. This process
809involves evaluating several sequences of refactoring itera-
810tively and the resultant design in terms of design quality
811and energy consumption. Measuring in real-time the energy
812consumption of a refactoring sequence can be prohibitive,
813because it requires to apply each refactoring element of the
814sequence in the code, compile it, generate the binary code
815(APK) and download it into the phone; all of these steps for
816each time the search-based process requires to evaluate a
817solution. That is why we define a strategy to estimate the
818impact of each refactoring operation on energy consump-
819tion, based on the results obtained in our preliminary study
820(Section 3) and without measuring during the search pro-
821cess. The strategy consists of the following steps:

8221) We compute the energy consumption of an app
823using the following formulation:

ECðaÞ ¼
X

m2M
ECðamÞ: (2)

825825

826WhereM is the set of methods in a.
8272) We prepare two versions of the same app with and
828without one instance of an anti-pattern type, and we
829call them aORI , and ak. To isolate possible aggregation
830effects, we remove only one instance of anti-pattern
831using the same refactoring operations. For example,
832if we want to remove a Lazy class, we apply inline
833class to the class that contained that anti-pattern.
8343) The energy consumption coefficient of a refactoring
835applied to remove an anti-pattern of type k, in app a
836is calculated using the following expression:

dECðakÞ ¼ medðECðakÞÞ �medðECðaORIÞÞ
medðECðaORIÞÞ : (3)

838838

839Where medð:Þ is the median value of the 30 indepen-
840dent runs for ECðakÞ and ECðaORIÞ. If the value of
841dECðakÞ is negative, it means that the refactored ver-
842sion consumes less energy. On the contrary, if this
843value is positive, it means that the refactored version
844consumes more energy than the original version.
8454) To determine a global refactoring energy coefficient
846dECðkÞ, we take three apps from our testbed for each
847type of anti-pattern k. dECðkÞ is calculated using the
848following expression:

dECðkÞ ¼ medðdECðakÞÞ; 8ak 2 Ak: (4)
850850

851Where Ak is the set of apps that were refactored to
852remove a single instance of anti-pattern type k.
853In the following, we describe the key components of our
854proposed approach EARMO, for the correction of anti-
855patterns while controlling for energy consumption.

8564.1 EARMO Overview

857EARMO is comprised of four steps, depicted in Algorithm 2.
858The first step consists in estimating the energy consumption
859of an app, running a defined scenario. In the second step,
860we build an abstract representation of the mobile app’s

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of

861 design, i.e., code meta-model. In the third step, the code meta-
862 model is visited to search for anti-pattern occurrences. Once
863 the list of anti-patterns is generated, the proposed approach
864 determines a set of refactoring opportunities based on a
865 series of pre- and post-conditions extracted from the anti-
866 patterns literature [5], [6], [33], [34]. In the final step, a multi-
867 objective search-based approach is run to find the best
868 sequence of refactorings that can be legally applied to the
869 code, from the refactoring opportunities list generated in
870 the previous step. The solutions produced by the proposed
871 approach meet two conflicting objectives: 1) remove a maxi-
872 mum number of anti-patterns in the system, and 2) improve
873 the energy consumption of the code design. In the follow-
874 ing, we describe in detail each of these steps.

875 4.2 Step 1: Energy Consumption Estimation

876 This step requires to provide (1) the energy consumption of
877 the app (E0). Developers can measure E0 by setting an
878 energy estimation environment similar to the one presented
879 in Section 3, or using a dedicated hardware-based energy
880 measurement tool like GreenMiner [55]. (2) The coefficient
881 dECðkÞ of each refactoring type analyzed. We derive
882 dECðkÞ values for each refactoring type based on the results
883 of the preliminary study. EARMO uses this information in
884 the last step to evaluate the energy consumption of a candi-
885 date refactoring solution during the search-based process.

886 4.3 Step 2: Code Meta-Model Generation

887 In this step we generate a light-weight representation (a
888 meta-model) of a mobile app, using static code analysis
889 techniques, with the aim of evolving the current design into
890 an improved version in terms of design quality and energy
891 consumption. A code meta-model describes programs at
892 different levels of abstractions. We consider three levels of
893 abstractions to model programs. A code-level model
894 (inspired by UML) which includes all of the constituents
895 found in any object-oriented system: classes, interfaces,
896 methods, and fields. An idiom-level model of a program
897 that is a code-level model extended with binary-class rela-
898 tionships, detected using static analysis. A design-level
899 model that contains information about occurrences of
900 design motifs or of code smells and anti-patterns. A code-
901 meta model must differentiate among use, association,
902 aggregation, and composition relationships. It should also
903 provide methods to manipulate the design model and gen-
904 erate other models. The objective of this step is to manipu-
905 late the design model of a system programmatically. Hence,
906 the code meta-model is used to detect anti-patterns, apply
907 refactoring sequences and evaluate their impact in the
908 design quality of a system. More information related to
909 code meta-models, design motifs and micro-architecture
910 identification can be found in [56], [57].

911 4.4 Step 3: Code Meta-Model Assessment

912 In this step we assess the quality of the code-meta model by
913 (1) identifying anti-patterns in its entities, and (2) determin-
914 ing refactoring operations to correct them. For example, the
915 correction of Binding resources too early anti-pattern can be
916 divided in the following steps: detect classes with code state-
917 ments that initialize energy-intensive components, e.g., GPS
918 or Wi-Fi, before the user or the app can interact with them;

919move the conflicting statements from its current position to a
920more appropriate method, e.g., when the app interacts with
921the user, preventing an unnecessarywaste of energy.

922Algorithm 2. EARMO Approach

923Input: App to refactor (App), scenario (scen)
924Output: Non-dominated refactoring sequences
9251: Pseudocode EARMOMobile app
9262: E0 ¼ Energy consumption measurement (App, scen)
927/* We estimate the energy consumption of an app

928to estimate the energy improvement during

929our search-based approach */
9303: AM ¼ Code meta-model generation (App)
931/* From the source code generate a

932light-weight representation of the code */
9334: RA ¼ Code meta-model assessment (AM)
934/* 1. Detect anti-patterns in the system and

935generate a map of classes that contain

936anti-patterns*/
937/* 2. Generate a list of refactoring

938operations to correct anti-patterns */
9395: Generation of optimal set of refactoring sequences
940(AM, RA, E0)
941/* This is a generic template of the EARMO algorithm that
942finds the optimal set of refactoring sequences */
9436: Procedure Generation of an optimal set of

944refactoring sequences (AM, RA, E0)
9457: P0 ¼ GenerateInitialPopulationðRAÞ
9468: X0 ¼ ?

947/* X is the set of non-dominated solutions */
948/* Evaluation of P0 */
9499: for all Si 2 P0 do
950/* Si is a refactoring sequence */
95110: AM 0 ¼ cloneðAMÞ
95211: apply refactoringsðAM 0; SiÞ
95312: compute Design QualityðAM 0; SiÞ
95413: compute Energy ConsumptionðAM 0; Si; E0Þ
95514: end for
956/* Update the set of non-dominated

957solutions found in this first sampling */
95815: X0 ¼ UpdateðX0; P0Þ
95916: t ¼ 0
96017: while not StoppingCriterion do
96118: t ¼ tþ 1
96219: Pt ¼ Variation OperatorsðPt�1Þ
96320: for all Si 2 Pt do
96421: AM 0 ¼ cloneðAMÞ
96522: apply refactoringsðAM 0; SiÞ
96623: compute Design QualityðAM 0; SiÞ
96724: estimate Energy ConsumptionðAM 0; Si; E0Þ
96825: end for
96926: Xt ¼ UpdateðXt; PtÞ
97027: end while
97128: best solution ¼ Xt

97229: return best_solutions

973The correction of certain anti-patterns requires not only
974the analysis of a class as a single entity, but also their rela-
975tionship with other classes (inter-class anti-patterns). For
976example, to correct instances of Blob in an app, we need to
977determine information related to the number of methods
978and attributes implemented by a given class, and compare
979it with the rest of the classes in the system. Then, we need to

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 11

IEE
E P

ro
of

980 estimate the cohesion between its methods and attributes,
981 and determine the existence of “controlling” relationships
982 with other classes. After performing these inter-class analy-
983 sis, we can propose refactorings to redistribute the excess of
984 functionality from Blob classes to related classes, i.e., move
985 method refactoring.
986 Before adding a refactoring operation to the list of candi-
987 dates, we validate that it meets all pre- and post-conditions
988 for its refactoring type, to preserve the semantic of the code
989 cf., Opdkye [58]. For example, a pre-condition is that we
990 cannot move a method to a class where there is a method
991 with the same signature. An example of post-condition is
992 that once we move a method from one class to another,
993 there is no method in the source class that has the same sig-
994 nature as the method that was moved.

995 4.5 Step 4: Generation of Optimal Set of Refactoring
996 Sequences

997 In this final step, we aim to find different refactoring sequen-
998 ces that remove a maximum number of anti-patterns, while
999 improving the energy consumption of mobile apps. Hence,

1000 we use EMO algorithms to obtain from all the set of possible
1001 refactoring combinations, the optimal solutions, i.e., the ones
1002 that are not dominated. In the following, we describe the key
1003 elements of ourmultiobjective optimization process.

1004 4.5.1 Solution Representation

1005 We represent a refactoring solution as a vector, where each
1006 element represents a refactoring operation (RO) to be
1007 applied, e.g., a subset of refactoring candidates obtained by
1008 EARMO. Each refactoring operation is composed of several
1009 fields like an identification number (ID), type of refactoring,
1010 the qualified name of the class that contains the anti-pattern,
1011 and any other field required to apply the refactoring in the
1012 model. For example, in a move method operation we also
1013 need to store the name of the method to be moved, and the
1014 name of the target class, while in the correction of long
1015 parameter list we store the names of the long-parameter-list
1016 methods to be refactored. In Table 5 we present an example
1017 of a refactoring sequence. The ID is used to identify whether
1018 a RO already exists in a sequence when adding new refac-
1019 toring candidates. The order is the position of the RO in the
1020 vector. We use the source class, and any other additional
1021 fields, to detect possible conflicts between existent ROs in a
1022 sequence. For example, it is not valid to have a move method

1023RO after inline class if the name of the source class for
1024both ROs is the same, as the class is removed after applying
1025inline class.

10264.1.2 Selection Operator

1027The selection operator controls the number of copies of an
1028individual (solution) in the next generations, according to
1029its quality (fitness). Examples of selection operators are
1030tournament selection or fitness proportionate selection [59].

10314.1.3 Variation Operators

1032The variation operators allow metaheuristics to transform a
1033candidate solution so that it can be moved through the deci-
1034sion space in the search of the most attractive solutions, and
1035to escape from local optima. In EMO algorithms, we often
1036find two main variation operators: crossover and mutation.
1037Crossover consists of combining two or more solutions
1038(known as parents) to obtain one or more new solutions
1039(offspring). We implement the Cut and splice technique as
1040crossover operator, which consists in randomly setting a cut
1041point for two parents, and recombining with the elements of
1042the second parent’s cut point and vice-versa, resulting in
1043two individuals with different lengths. We provide an
1044example in Fig. 5.
1045For mutation, we consider the same operator used in
1046our previous work [31] that consists of choosing a ran-
1047dom point in the sequence and removing the refactoring
1048operations from that point to the end. Then, we complete
1049the sequence by adding new random refactorings until
1050there are no more valid refactoring operations to add
1051(i.e., that do not cause conflict with the existent ones in
1052the sequence). We provide an example in Fig. 6.

10534.1.4 Fitness Functions

1054We define two fitness functions to evaluate the quality and
1055the energy consumption of the refactoring solutions. The
1056function to evaluate the quality of the design is DQ ¼
10571� NDC

NC�NAT , where NDC is the number of classes that con-
1058tain anti-patterns, NC is the number of classes, and NAT is
1059the number of different types of anti-patterns. The value of
1060DQ, which is normalized between 0 and 1, rises when the
1061number of anti-patterns in the app is reduced. A value of
10621 represents the complete removal of anti-patterns, hence
1063we aim to maximize the value of DQ. This objective func-
1064tion was introduced by Ouni et al. [28]. We follow this

TABLE 5
Representation of a Refactoring Sequence

ID Type Source class Additional fields

4 Inline private getters and setters [pkg].CalculatorWidget private getters and setters: getDecimal()
52 Move method [pkg].BasicCalculator target class: [pkg].CalculatorExpressionEvaluator

method name: cleanExpression(String)
2 Move resource request to visible method [pkg].SelectLocationActivity NONE
187 Collapse Hierarchy [pkg].BasicCalculator target class: [pkg].PanelSwitchingCalculator
189 Replace Inheritance with delegation [pkg].Calculator target class: [pkg].MatrixCalculator
8 Inline class [pkg].CalculatorPadViewPager target class: [pkg].ResizingButton
145 Replace Hashmap with Arraymap [pkg].LruCache HashMaps to Replace: mLruMap, mWeakMap
847 Introduce parameter- object [pkg].ImageManager long-parameter-list methods: addImage

(ContentResolver, String, long, Location, String,
String, Bitmap, byte[], int[])

“pkg” is the package name of an app.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of

1065 formulation because it is easy to implement and computa-
1066 tionally inexpensive.
1067 To evaluate the energy consumption of an app
1068 (expressed in Joules) after refactoring, we define the follow-
1069 ing formulation: let E0 be the estimated energy consump-
1070 tion of an app a, ri a refactoring operation type in a
1071 sequence S ¼ ðr1; . . . ; rnÞ. We estimate the energy consump-
1072 tion ECðaÞ of the app resulting from the application of the
1073 refactoring sequence S to the app a as follows: ECðaÞ ¼
1074 E0 þ

Pn
i¼1 E0 � dECðriÞ, where dECðriÞ is the energy coeffi-

1075 cient value of the refactoring operation ri. We aim to mini-
1076 mize the value of EC during the search process.
1077 In Algorithm 2, we present a generic pseudocode for the
1078 EMO algorithms used by our approach (lines 6-29). The
1079 process starts by generating an initial population of refactor-
1080 ing sequences from the code meta-model assessment step.
1081 Next, it applies each refactoring sequence in the code meta-
1082 model and measures the design quality (number of anti-pat-
1083 terns) and the energy saved by applying the refactorings
1084 included in the sequence (lines 11-13). The next step is to
1085 extract the non-dominated solutions (line 15). From line 20
1086 to 25, the main loop of the metaheuristic process is executed.
1087 The goal is to evolve the initial population, using the varia-
1088 tion operators described before, to converge to the Pareto
1089 optimal front. The stopping criterion, which is defined by
1090 the software maintainer, is a fixed number of evaluations.
1091 Finally, in lines 28-29, the optimal refactoring sequences
1092 are retrieved.

1093 5 EVALUATION OF EARMO

1094 In this section, we evaluate the effectiveness of EARMO at
1095 improving the design quality ofmobile appswhile optimizing
1096 energy consumption. The quality focus is the improvement of
1097 the design quality and energy consumption of mobile apps,
1098 through search-based refactoring. The perspective is that of
1099 researchers interested in developing automated refactoring
1100 tools for mobile apps, and practitioners interested in improv-
1101 ing the design quality of their apps while controlling for
1102 energy consumption. The context consists of the 20 Android
1103 apps studied in Section 3, and three multiobjective

1104metaheuristics (MOCell, NSGA-II, and SPEA2). We instanti-
1105ate our generic EARMO approach using the three multiobjec-
1106tivemetaheuristics, described in Section 2.3.
1107The code meta-model is generated using Ptidej Tool Suite
1108[60]. We select this tool suite because it has more than ten
1109years of active development and it is maintained in-house.
1110Additionally, since October 10th, 2014, its source code have
1111become open-source and released under the GNU Public
1112License v2, easing replication.
1113The anti-patterns considered in the evaluation of
1114EARMO are the ones described in Section 3.1. In the follow-
1115ing, we describe the strategies implemented in EARMO to
1116correct Android and object-oriented (OO) anti-patterns.
1117Move Resource Request to Visible Method (MRM). To deter-
1118mine the appropriate method to initialize a high-power-
1119consumption component, it is necessary to understand the
1120vendor platform. In our case, we illustrate the refactoring
1121based on Android, but the approach can be extended to
1122other operating systems. As previously discussed in Section
11233.2, when users launch an app, the app goes through an ini-
1124tialization process that ends after the onStart method is
1125executed (the app is visible). After the onResume method is
1126executed, the user can interact with the app, but not before
1127that. Hence, switching on a high-power-consumption com-
1128ponent in the body of OnCreate is a terrible idea, in terms
1129of energy consumption. Consequently, the refactoring con-
1130sists in moving any hardware resource request from
1131onCreate to OnResume .
1132Inline Private Getters and Setters (IGS). The use of private
1133getters and setters is expensive in Android mobile devices
1134in comparison to direct field access. Hence, we inline the
1135getters and setters, and access the private field directly. An
1136illustrative example is provided in Fig. 7.
1137Replace HashMap with Array Map (RHA). ArrayMap is a
1138light-weight-memory mapping data structure included
1139since Android API 19. The refactoring consists in replacing
1140the import of java.util.HashMap with android.

1141Util.Arraymap , and any HashMap reference with Array-
1142Map. ArrayMap is compatible with the standard Java con-
1143tainer APIs (e.g., iterators, etc), and not further changes are
1144required for this refactoring, as depicted in Fig. 8.
1145Collapse Hierarchy (CH). With this refactoring, we aim to
1146collapse the features of a unique child class to the parent class,
1147to reduce the complexity of the design. This is useful when
1148both classes are very similar, or the child class does not add
1149extra functionality, but was introduced presumably for han-
1150dling future enhancements that never occurred. In Fig. 9 we

Fig. 5. Example of cut and slice technique used as crossover operator.

Fig. 6. Example of the mutation operator used.

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 13

IEE
E P

ro
of

1151 provide an example of SG anti-pattern found in Calculator
1152 app. We can observe that the class Calculator does not
1153 implement any method, so there is no need to keep it in the
1154 design as it is, so the refactoring consists in removing the
1155 abstract modifier of the MatrixCalculator class, and
1156 replace all Calculator class references in the app to
1157 MatrixCalculator , including the AndroidManifest.xml
1158 file, as this class is declared as an Android activity.
1159 Inline Class (IC). This refactoring consists in removing a
1160 lazy class in the system and transfering all its functionalities
1161 (if any) to any other class that is related to the LC (we
1162 assume that there is no hierarchy relationship, if so we
1163 would apply collapse hierarchy instead). To select such a
1164 class, we iterate over all the classes in the systems, searching
1165 for methods and attributes that access the LC features
1166 directly, or by public accessors (getters or setters). From
1167 those classes we choose the one with the larger number of
1168 access to the LC.
1169 Introduce Parameter Object (IPO). In this refactoring, we
1170 extract a long list of parameters into a new object to improve
1171 the readability of the code. First, we create a new class that
1172 will contain the extracted parameters. Then, we create a
1173 new instance of the parameter object with the values that

1174we used to send to the LPL method. Next, in the LPL
1175method, we remove the old parameters and add the new
1176parameter object that we created. Finally, we replace
1177each parameter from the method body with fields of the
1178new parameter object. We show in Fig. 10, an example
1179of IPO in a method extracted from Quicksnap, which
1180contains nine parameters.
1181Replace Inheritance with Delegation (RIWD). This refactor-
1182ing is applied when we find a class that inherits a few meth-
1183ods from its parent class. To apply this refactoring, we
1184create a field of the parent class, and for each method that
1185the child use, we delegate to the field (parent class type),
1186replacing the inheritance by an association. We present an
1187example of this refactoring in Fig. 11.
1188Move Method (MM). This refactoring is applied to decom-
1189pose a Blob class using move method and it is originally pro-
1190posed by Seng et al. [26]. For each method in the Blob class,
1191we search candidate classes from the list of parameter types
1192in the method only if the target class is not a primitive type
1193and the source code is reachable inside the app. Otherwise
1194we select from the field types of the source class following
1195the same rules.

11965.1 Descriptive Statistics of the Studied Apps

1197Table 6 presents relevant information about anti-patterns
1198contained in the studied apps. The second column contains
1199the number of classes (NOC), and the following columns
1200contain the occurrences of OO anti-patterns (3-7) and

Fig. 7. Example of inline private getters and setters refactoring. Original
code on the top, and refactored code on the bottom.

Fig. 8. Example of replacing HashMap with ArrayMap refactoring. Origi-
nal code on the top, and refactored code on the bottom.

Fig. 9. An example of SG in Calculator . Original class diagram on the
left, and refactored class diagram on the right.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of

1201 android anti-patterns (8-10). The last two rows summarize
1202 the median and total values for each column.

1203 5.2 Research Questions

1204 To evaluate the effectiveness of EARMO at improving the
1205 design quality of mobile apps while optimizing energy con-
1206 sumption and its usability by software developers, we for-
1207 mulate the following three research questions:
1208 (RQ1) To what extent EARMO can remove anti-patterns
1209 while controlling for energy consumption?
1210 This research question aims to assess the effectiveness of
1211 EARMO at improving design quality, while reducing
1212 energy consumption.
1213 (RQ2) What is the precision of the energy improvement
1214 reported by EARMO?
1215 This research question aims to examine if the estimated
1216 energy improvements reported by EARMO reflect real
1217 measurements.
1218 (RQ3) To what extent is design quality improved by EARMO
1219 according to an external quality model?
1220 While the number of anti-patterns in a system serves as a
1221 good estimation of design quality, there are other quality
1222 attributes such as those defined by the QMOOD quality
1223 model [22] that are also relevant for software maintainers,
1224 e.g., reusability, understandability and extendibility. This
1225 research question aims to assess the impact of the application
1226 of EARMO on these high-level design quality attributes.
1227 (RQ4) Can EARMO generate useful refactoring solutions for
1228 mobile developers?
1229 This research question aims to assess the quality of the
1230 refactoring recommendations made by EARMO from the

1231point of view of developers. We aim to determine the kind of
1232recommendation that developers find useful and understand
1233why theymay chose to discard certain recommendations.

12345.3 Evaluation Method

1235In the following, we describe the approach followed to
1236answer RQ1 , RQ2 , RQ3 and RQ4.
1237For RQ1 , we measure two dependent variables to evaluate
1238the effectiveness of EARMO at removing anti-patterns in
1239mobile apps while controlling their energy consumption:

1240� Design Improvement (DI). DI represents the delta of
1241anti-patterns occurrences between the refactored (a0)
1242and the original app (a) and it is computed using the
1243following formulation:

DIðaÞ ¼ ACða0Þ �ACðaÞ
ACðaÞ � 100: (5)

12451245

1246Where ACðaÞ is the number of anti-patterns in an
1247app a and ACðaÞ � 0. The sign of DI expresses an
1248increment (þ)/decrement (�) and the value repre-
1249sents the improvement amount in percentage. High
1250negative values are desired.

Fig. 10. Example of introduce parameter object refactoring. Original
code on the top, and refactored code on the bottom.

Fig. 11. An example of applying RIWD in a class. Original class diagram
on the left, and refactored class diagram on the right.

TABLE 6
Descriptive Statistics Showing Anti-Pattern Occurrences

in the Studied Apps

O.O. AP Android AP

App NOC BL LC LP RB SG BE HMU PGS

Calculator 43 2 3 0 8 5 0 14 0
BlackJackTrainer 13 1 3 0 0 0 0 0 0
GlTron 26 1 3 5 0 0 0 6 1
Kindmind 36 4 0 2 4 0 0 5 0
MatrixCalculator 16 1 0 2 1 2 0 0 0
MonsterHunter 194 11 1 2 32 0 0 3 0
mylocation 9 0 1 0 0 0 1 0 0
OddsCalculator 10 0 6 0 0 0 0 1 0
Prism 17 0 3 0 1 2 0 1 0
Quicksnap 76 3 6 1 1 1 0 10 4
SASAbus 49 0 1 0 0 1 2 7 0
Scrabble 9 0 4 0 0 1 0 2 0
SoundManager 23 0 9 1 0 0 0 6 2
SpeedoMeter 3 0 1 0 0 0 1 0 0
STK 25 0 1 1 0 0 0 4 0
Sudowars 110 26 2 3 21 6 0 9 1
Swjournal 19 0 1 1 0 0 0 0 0
TapsofFire 90 4 5 7 4 1 0 19 1
Vitoshadm 9 0 0 0 1 1 0 0 0
Words 136 10 4 12 6 1 0 15 0

Median 24 1 3 1 1 1 0 4 0
Total 913 63 54 37 79 21 4 102 9

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 15

IEE
E P

ro
of

1251 � Estimated energy consumption improvement (EI). EI
1252 is computed using the following formulation:

EIðaÞ ¼ ECða0Þ � ECðaÞ
ECðaÞ � 100: (6)

12541254

1255

1256 Where ECðaÞ is the energy consumption of an app
1257 a and ECðaÞ � 0. EI captures the improvement in the
1258 energy consumption of an app a after refactoring oper-
1259 ation(s). The sign of EI expresses an increment (þ)/
1260 decrement (�) and the value represents the amount in
1261 percentage. High negative values are desired.
1262

1263 The independent variables are the three selected EMOmeta-
1264 heuristics, i.e., MOCell, NSGA-II, and SPEA2. We choose
1265 them because they are well-known evolutionary techniques
1266 that have been successfully applied to solve optimization
1267 problems, including refactoring [28], [61]. We implement
1268 all the metaheuristics used in this study using the jMetal
1269 Framework [62], which is a popular framework for solving
1270 optimization problems.
1271 The performance of a metaheuristic can be affected by the
1272 correct selection of its parameters. The configurable settings
1273 of the search-based techniques used in this paper correspond
1274 to stopping criterion, population size, and the probability of
1275 the variation operators. We use number of evaluations as the
1276 stopping criteria. As the maximum number of evaluations
1277 increase, the algorithm obtains better quality results on aver-
1278 age. The increase in quality is usually very fast when the
1279 maximum number of evaluation is low. That is, the slope of
1280 the curve quality versus maximum number of evaluations is
1281 high at the very beginning of the search. But this slope tends
1282 to decrease as the search progresses. Our criterion to decide
1283 the maximum number of evaluations is to select a value for
1284 which this slope is low enough. In our case low enough is
1285 when we observe that no more anti-patterns are removed
1286 after that number of evaluations. We empirically tried differ-
1287 ent number of evaluations in the range of 1,000 to 5,000 and
1288 found 2,500 to be the best value.
1289 For selection operator we use the same operator defined
1290 by Deb et al. [41] for NSGA-II, and binary tournament for the
1291 other EAs, which are the default operators used in JMetal
1292 for these algorithms.
1293 For population size, we use a default value of 100 indi-
1294 viduals; and for the probability of applying a variation oper-
1295 ator we selected the parameters using a factorial design in
1296 the following way: we tested 16 combinations of mutation
1297 probability pm ¼ ð0:2; 0:5; 0:8; 1Þ, and crossover probability
1298 pc ¼ ð0:2; 0:5; 0:8; 1Þ, and obtained the best results with the
1299 pair ð0:8; 0:8Þ.
1300 Concerning the particular problem of automated-refac-
1301 toring, the initial size of the refactoring sequence is crucial
1302 to find the best sequence in a timely manner. If the sequence
1303 is too long, the probability of conflicts between refactorings
1304 rises, affecting the search process. On the other hand, small
1305 sequences produce refactoring solutions of poor quality. To
1306 obtain a trade-off between this two scenarios, we experi-
1307 mented running the metaheuristics with four relative
1308 thresholds: 25, 50, 75 and 100 percent of the total number of
1309 refactoring opportunities, and found that 50 percent is the
1310 most suitable value for our search-based approach.

1311With respect to energy estimation, we show in Table 7
1312the energy consumption coefficient dECðkÞ for each refac-
1313toring type, that we use in our experiment. These coeffi-
1314cients were obtained from the formulation described
1315in Section 4.
1316Note that for the move method refactoring, we did not use
1317the energy consumption measured for the correction of
1318Blob, as correcting a Blob requires many move methods to be
1319applied. Hence, we measured the same apps used for Blob
1320(i.e., Swjournal , Quicksnap and Calculator) with and without
1321moving exactly one method to estimate the effect of this
1322refactoring. The results, which are not statistically signifi-
1323cant, show a decrement in energy consumption.
1324In order to determine which one of our three EMO algo-
1325rithms (i.e., MOCell, NSGA-II, and SPEA2) achieves the
1326best performance, we compute two different performance
1327indicators: Hypervolume (HV) [63] and SPREAD [41].
1328We also perform Whitney U Test test pair-wise compari-
1329sons between the three algorithms to validate the results
1330obtained for these two performance indicators.
1331For RQ2, we perform an energy consumption validation
1332experiment to evaluate the accuracy of EARMO using our
1333measurement setup described in Section 2.2. This is impor-
1334tant to observe how close is the estimated energy improve-
1335ment (i.e., EI) compared to the real measurements. For each
1336selected app we compute refactoring recommendations
1337using EARMO and implement the refactorings in the source
1338code of the app. Then, we measure the energy consumption
1339of the original and refactored versions of the apps using a
1340typical usage scenario, and compute the difference between
1341the obtained values.We compare the obtained result with EI.
1342For RQ3, we use the Quality Model for Object-Oriented
1343Design (QMOOD) [22] to measure the impact of the refactor-
1344ing sequences proposed by EARMO, on the design quality
1345of the apps. QMOOD defines six design quality attributes in
1346the form of metric-quotient weighted formulas that can be
1347easily computed on the design model of an app, which
1348makes it suitable for automated-refactoring experimenta-
1349tions. Another reason for choosing the QMOOD quality
1350model is the fact that it has been used in many previous
1351works on refactoring [25], [64], which allows for a replica-
1352tion and comparison of the obtained results.
1353In the following, we present a brief description of the
1354quality attributes used in this study. Formulas for comput-
1355ing these quality attributes are described in Table 8. More
1356details about the metrics and quality attributes can be found
1357in the original source [22]. In this work we do not consider
1358the functionality quality attribute because refactoring being

TABLE 7
Deltas of Energy Consumption by Refactoring Type

Refactoring Type dEC (ratio)

Collapse hierarchy 0.0056
Inline class �0.0315
Inline private getters and setters �0.0237
Introduce parameter object 0.0047
Move method �0.0020
Move resource request to visible method �0.0412
Replace HashMap with ArrayMap �0.0160
Replace Inheritance with delegation �0.0067

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of1359 a behavior-preserving maintenance activity, should not

1360 impact apps’ functionalities.

1361 � Reusability: The degree to which a software module
1362 or other work product can be used in more than one
1363 software program or software system.
1364 � Flexibility: The ease with which a system or compo-
1365 nent can be modified for use in apps or environ-
1366 ments other than those for which it was specifically
1367 designed.
1368 � Understandability: The properties of a design that
1369 enables it to be easily learned and comprehended.
1370 This directly relates to the complexity of the design
1371 structure.
1372 � Effectiveness: The design’s ability to achieve desired
1373 functionality and behavior using OO concepts.
1374 � Extendibility: The degree to which an app can be
1375 modified to increase its storage or functional capacity.
1376 We compute the quality gain (QG) for each quality attri-
1377 bute using the following formulation:

QGðAyÞ ¼ Ayða0Þ �AyðaÞ
AyðaÞ
�� �� � 100: (7)

13791379

1380

1381 Where AyðaÞ is the quality attribute y measurement for
1382 an app a, and a0 is the refactored version of the app a. The
1383 sign expresses an increment (þ)/decrement (�) and the
1384 value represents the improvement amount in percentage.
1385 Note that since the calculation of QMOOD attributes can
1386 lead to negative values in the original design, it is necessary
1387 to compute the absolute value of the divisor.
1388 For RQ4 , we conducted a qualitative studywith the devel-
1389 opers of our studied apps. For each app, we randomly
1390 selected some refactoring operations from the refactoring
1391 sequence recommended by EARMO, and submitted them to
1392 the developers of the app for approval or rejection.We choose
1393 three examples for each type of refactoring and for each app.
1394 To measure developers’ taking of the refactorings pro-
1395 posed, we compute for each app the acceptance ratio , which is
1396 the number of refactorings accepted by developers divided
1397 by the total number of refactorings submitted to the develop-
1398 ers of the app. We also compute the overall acceptance ratio for
1399 each type of anti-pattern, considering all the apps together.

1400 5.4 Results of the Evaluation

1401 In this section we present the answers to our four research
1402 questions that aim to evaluate EARMO.

1403RQ1: To what extent EARMO can remove anti-patterns while
1404controlling for energy consumption?
1405Because the metaheuristic techniques employed in this
1406work are non-deterministic, the results might vary between
1407different executions. Hence, we run each metaheuristic 30
1408times, for each studied app, to provide statistical signifi-
1409cance. As a result, we obtain three reference Pareto front
1410approximations (one per algorithm) for each app. From
1411these fronts, we extract a global reference front that com-
1412bines the best results of each metaheuristic for each app
1413and, after that, dominated solutions are removed.
1414In Fig. 12, we present the distribution of DI and EI metric
1415values, for each solution in the Pareto reference front. Fig. 12
1416highlights a median correction of 84 percent of anti-patterns
1417and estimated energy consumption improvement of
141848 percent. To provide insights on the performance of
1419EARMO, we present, in Table 9, the number of non-domi-
1420nated solutions found for each app (column 2), theminimum
1421and maximum values with respect to DI (columns 3-4), and
1422EI metrics (columns 5-6). The number of non-dominated
1423solutions are the number of refactorings sequences that

TABLE 8
QMOOD Evaluation Functions

Quality Attribute Quality Attribute Calculation

Reusability �0.25 * DCC + 0.25 * CAM + 0.5 * CIS + 0.5 * DSC
Flexibility 0.25 * DAM - 0.25 * DCC + 0.5 * MOA +0.5 * NOP
Understandability �0.33 * ANA + 0.33 * DAM � 0.33 * DCC + 0.33 *

CAM -0.33 * NOP� 0.33 * NOM � 0.33 * DSC
Effectiveness 0.2 * ANA + 0.2 * DAM + 0.2 * MOA + 0.2 * MFA

+ 0.2 * NOP
Extendibility 0.5 * ANA -0.5 * DCC + 0.5 * MFA + 0.5 * NOP

where DSC is design size, NOM is number of methods, DCC is coupling,
NOP is polymorphism, NOH is number of hierarchies, CAM is cohesion
among methods, ANA is avg. num. of ancestors, DAM is data access metric,
MOA is measure of aggregation, MFA is measure of functional abstraction,
and CIS is class interface size. Fig. 12. Distribution of anti-patterns and energy consumption reduction

in the studied apps.

TABLE 9
Minimum and Maximum Values (%) of DI and EI Obtained

for Each App After Applying EARMO

Solutions DI EI

App Min. Max. Min. Max.

blackJacktrainer 1 �75 �75 �6.14 �6.14
calculator 5 �75 �93.75 �48.07 �53.55
gltron 2 �93.75 �100 �25.85 �26.32
kindmind 3 �80 �93.33 �18.42 �18.76
matrixcalculator 3 �33.33 �66.67 0.28 �0.67
monsterhunter 2 �81.63 �83.67 �43.95 �44.42
mylocation 1 �100 �100 �2.05 �2.05
oddscalculator 1 �100 �100 �14.64 �14.64
prism 2 �85.71 �100 �7.94 �9.18
quicksnap 2 �92.31 �96.15 �83.65 �84.88
SASAbus 1 �81.82 �81.82 �27.09 �27.09
scrabble 2 �85.71 �100 �12.36 �12.92
soundmanager 2 �94.44 �100 �35.36 �35.83
speedometer 1 �100 �100 �6.17 �6.17
stk 2 �83.33 �100 �11.05 �11.53
sudowars 8 �60.29 �76.47 �48.77 �63.93
swjournal 1 �100 �100 �5.67 �5.67
tapsoffire 3 �82.93 �87.8 �88.26 �89.21
vitoshadm 1 �100 �100 �3.57 �3.57
words 8 �75 �91.67 �56.83 �63.37

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 17

IEE
E P

ro
of

1424 achieved a compromise in terms of design quality and
1425 energy consumption. Table 9 reports 2.5 solutions on average
1426 with a maximum of eight solutions (words). Thus, for the
1427 studied apps, a softwaremaintainer has approximately three
1428 different solutions to choose to improve the design of an app.
1429 In general, we observe that the results for DI and EI met-
1430 rics are satisfactory, and we find that in nine apps EARMO
1431 reach 100 percent of anti-patterns correction with a maxi-
1432 mum EI of 89 percent. With respect to the variability
1433 between apps with more than one solution, for EI metrics
1434 the difference between the maximum and minimum value
1435 is small, and for DI too, except for the apps with more than
1436 two solutions (i.e., Calculator and Words). We observe that
1437 more than 65 percent of the apps contain more than one
1438 solution. To have an insight on those apps, we present
1439 in Fig. 13 the Pareto Front (PF) for each app, where each
1440 point represents a solution with their corresponding values,
1441 DQ (x-axis) and EC (y-axis). The most attractive solutions
1442 are located in the bottom right of the plot.
1443 According to the concept of dominance, every Pareto
1444 point is an equally acceptable solution of the multiobjective
1445 optimization problem [65], but developers might show pref-
1446 erence over the ones that favors the metric they want to pri-
1447 oritize. They could select the refactorings that improve
1448 more the energy consumption (e.g., they can chose to cor-
1449 rect more Android anti-patterns), or apply more OO refac-
1450 torings to improve the maintainability of their code. Other
1451 developers might be more conservative and select solutions
1452 located in the middle of these two objectives. Developers
1453 have the last word, and EARMO supports them by provid-
1454 ing different alternatives.

1455Impact of Refactoring Sequences with Respect to the Type of
1456Anti-Patterns. The anti-patterns analyzed in this study affect
1457different quality metrics, and their definitions can be
1458opposed, e.g., Blob and Lazy class. In Table 10, we present
1459the median values of the DI metric for the non-dominated
1460solutions of each type of anti-pattern. The results fall into
1461two different categories.

Fig. 13. Pareto front of apps with more than one non-dominated solution.

TABLE 10
Median Values of Anti-Patterns Corrected by Type (%)

O.O.

anti-patterns

Android

anti-patterns

App BL LC LP RB SG BE HMU PGS

blackjacktrainer 0 �100 NA NA NA NA NA NA

calculator �100 �100 NA �75 �60 NA NA �100

gltron �100 �100 �90 NA NA NA �100 �100

kindmind �100 NA �50 �100 NA NA NA �100

matrixcalculator 0 NA �50 �100 �50 NA NA NA
monsterhunter �27.27 �100 �75 �100 NA NA NA �100

mylocation NA �100 NA NA NA �100 NA NA

oddscalculator NA �100 NA NA NA NA NA �100

prism NA �100 NA �100 �75 NA NA �100

quicksnap �66.67 �100 �100 �100 �50 NA �100 �100

SASAbus NA �100 NA NA 0 �100 NA �100

scrabble NA �100 NA NA �50 NA NA �100

soundmanager NA �100 �50 NA NA NA �100 �100

speedometer NA �100 NA NA NA �100 NA NA

stk NA �100 �50 NA NA NA NA �100

sudowars �59.62 �100 �66.67 �80.95 �66.67 NA �100 �94.44

swjournal NA �100 �100 NA NA NA NA NA

tapsoffire �75 �40 �85.71 �100 0 NA �100 �100

vitoshadm NA NA NA �100 �100 NA NA NA

words �85 �100 �91.67 �33.33 50 NA NA �100

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of

1462 � Medium. Speculative generality and Blob anti-patterns
1463 have median correction rates of 50 and 67 percent,
1464 respectively, while Long parameter listreached 75
1465 percent.
1466 � High. For the rest of the studied anti-patterns, the
1467 median correction rate is 100 percent, including the
1468 three Android anti-patterns studied and two OO
1469 anti-patterns (i.e., Refused bequest, Lazy class)

1471 We conclude that including energy-consumption as a separate
1472 objective when applying automatic refactoring can reduce the
1473 energy consumption of a mobile app, without impacting the
1474 anti-patterns correction performance.

1475 Performance of the Metaheuristics Employed. As mentioned
1476 before, EARMO makes use of EMO techniques to find opti-
1477 mal refactoring sequences. Therefore, the results can vary
1478 from one technique to another. A software maintainer
1479 might be interested in a technique that provides the best
1480 results in terms of diversity of the solutions, and conver-
1481 gence of the algorithm employed. In the MO research com-
1482 munity, the Hypervolume (HV) [63] is a quality indicator
1483 often used for this purpose, and higher values of this met-
1484 ric are desirable.
1485 In Table 11 we present the median and interquartile
1486 range (IQR) of the HV indicator for each metaheuristic and
1487 for each app with more than one solution. A special notation
1488 has been used in this table: a dark gray colored background
1489 denotes the best technique while lighter gray represents the
1490 second-best performing technique. For the apps with more
1491 than two solutions we observe a draw in Matrixcalculator,
1492 while MOCell outperforms the other algorithms in two
1493 apps. SPEA2 outperforms the rest in Sudowars , and gets sec-
1494 ond best in two more apps. NSGA-II obtains second-best in
1495 Sudowars. In the cases where the metaheuristics cannot find
1496 more than one optimal solution, the value of HV is zero.
1497 Hence, the outperforming technique according to this qual-
1498 ity indicator remains unknown.
1499 Another quality indicator often used is the Spread [41]. It
1500 measures the distribution of solutions into a given front.
1501 Low values close to zero are desirable as they indicate that
1502 the solutions are uniformly distributed. In Table 12 we pres-
1503 ent the median and IQR results of the Spread indicator. We
1504 observe that MOCell outperforms the other techniques in 92
1505 percent (12 apps) of cases, while soundmanager reports the

1506same value for the three EMO s. SPEA2 gets the second best
1507in 69 percent (nine apps), and NSGAII only in 8 percent
1508(three apps).
1509To validate the results obtained by the HV and the Spread
1510indicators, we perform pair-wise comparisons between the
1511three metaheuristics studied, using Whitney U Test, with a
1512confidence level of 95 percent. The results of these tests are
1513summarized in Table 13. We introduce a special notation to
1514facilitate the comprehension of the results. The ~ symbol
1515in a column indicates that the metaheuristic in the left side
1516achieved a better performance than the one positioned after
1517a comma. The Ï indicates the opposite, and the—symbol
1518in a column indicates that there is no statistically significant
1519difference to reject the null hypothesis (i.e., the two distribu-
1520tion have the same median). In each cell, the integer value
1521represents the number of apps that fall in each of the afore-
1522mentioned categories.
1523Concerning HV indicator, only one app (sudowars) was
1524statistically significant in the pair MOCell-NSGAII favoring
1525the former one. So we can conclude that in general the per-
1526formance of the three algorithms is similar. With respect to
1527the Spread indicator, MOCell outperforms SPEA2 in seven
1528apps, and NSGA-II in 10. In the pair NSGA-II-SPEA2, there
1529is one app (Matrixcalculator) where NSGA-II outperforms
1530SPEA2. Hence, the solutions obtained by MOCell are better
1531spread through the entire Pareto front than the other algo-
1532rithms. Regarding execution time, we did not observed a
1533significant difference between the execution time of the
1534studied metaheuristics.
1535According to the Whitney U Test test, MOCell is the best
1536performing technique with respect to solution diversity,
1537while regarding HV the performance of the three EMO

TABLE 11
Hypervolume

Median and IQR.

TABLE 12
Spread

Median and IQR.

TABLE 13
Pair-Wise Whitney U Test Test for HV and Spread Indicators

EMO Pair Quality Indicator ~ Ï –

MOCell, SPEA2 HV 0 0 13
Spread 7 0 6

MOCell, NSGA-II HV 0 1 12
Spread 10 0 3

NSGA-II, SPEA2 HV 0 0 13
Spread 1 0 12

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 19

IEE
E P

ro
of

1538 algorithms is similar. Developers and software maintainers
1539 should consider using MOCell when applying EARMO.
1540 RQ2: What is the precision of the energy improvement
1541 reported by EARMO?
1542 The output of EARMO is a sequence of refactorings that
1543 balances anti-pattern correction and energy consumption.
1544 Developers select from the Pareto front, the solutions that
1545 best fits their needs. To validate the estimations of EARMO,
1546 we play the role of a software maintainer who wants to pri-
1547 oritize the energy consumption of his/her app over design
1548 quality.
1549 The process of validation consists in manually applying
1550 the sequence of refactorings to their corresponding source
1551 code, for each of the studied apps. We ran the scenario after
1552 applying each sequence to ensure that we are not introduc-
1553 ing code regression. Finally, we compile and generate
1554 the APK file to deploy it in the mobile device and measure
1555 their energy consumption using our experimental setting
1556 described in Section 3. With this EC validation, we want
1557 to estimate EARMO’s median error with respect to real
1558 measurements.
1559 Concerning the scenarios used for EC validation, we
1560 defined new ones for the apps where we consider that the
1561 scenario used in the preliminary study do not reflect a typi-
1562 cal usage. The reason is that in the preliminary study we
1563 were only interested in executing the code segment related
1564 to an anti-pattern instance in the original version and
1565 its corresponding refactored code segment. The scenarios
1566 of Table 3 were just designed to check if a correlation exists
1567 between energy consumption and anti-pattern occurrences.
1568 Some scenarios designed for the preliminary study just
1569 required to start the app, wait certain seconds, and close it
1570 to execute the refactored code segment. For the EC valida-
1571 tion we want to reflect the actions that a user typically will
1572 perform with an app, according the purpose of their crea-
1573 tors, instead of scenarios designed to maximize other met-
1574 rics like coverage which do not reflect the daily use of
1575 normal users. To validate EARMO (and perform optimiza-
1576 tion) we replace the scenarios in Table 3, i.e., the ones that
1577 only load and close an app, by the ones presented
1578 in Table 14. Note that in some cases we have to modify the
1579 code to remove any sources of randomness that may alter
1580 the execution path between different runs. For example,
1581 Sudowars is a sudoku game where the board is randomly
1582 generated. Because in the scenario we introduce fixed num-
1583 bers in fixed positions of the board, we need to ensure that
1584 the same board is always displayed to produce the same
1585 execution path over the 30 independent runs. Hence, we
1586 fixed the random seed used in the app to force to display
1587 always the same board. A similar case happens to another
1588 board game (scrabble).
1589 For the manual application of the sequence of refactor-
1590 ings, two of the authors of this work (PhD. candidates with
1591 more than 5 years of experience in Java), and an intern
1592 (MsC. Student with two years of programming experience)
1593 worked together. After each team member finished to apply
1594 a refactoring sequence to an app, we shared the control ver-
1595 sion repository with the other team members for approval.
1596 In case of disagreement, we vote for either apply or exclude
1597 a refactoring operation(s) from a sequence. Additionally,
1598 whenever we observed an abnormal behavior in the app

1599after applying a refactoring, we rolled back to the previous
1600code version and discarded the conflicting refactoring. We
1601provide a link to the git repositories containing the refac-
1602tored versions available online at http://swat.polymtl.ca/
1603rmorales/EARMO/.
1604It is important to mention that we applied the refactor-
1605ings using the Android Studio tool support, and we do not
1606find cases where refactorings violate any semantic pre- and
1607post-condition. However, there are many cases, specially in
1608move method refactoring, and in replace inheritance with delega-
1609tion , where it is possible to introduce regression despite the
1610fact that the refactoring is semantically correct. Due to the
1611absence of a test suite, we execute the defined scenario on
1612the phone after applying each refactoring, to validate the
1613correct execution of it. This is crucial, because an app could
1614be executed even if the refactoring applied introduces
1615regression until we exercise the functionality related to the
1616code fragment touched by the refactoring. When we notice
1617that the refactoring is not exercised in the defined scenario,
1618we separately test that functionality.
1619In Table 15 we present the results of the manual refactor-
1620ing application. The column Discarded ref. is the number of
1621refactorings discarded from the sequence; Applied ref. the
1622refactorings applied, and Total is the sum of both columns.
1623Precision is the ratio of refactorings generated over the valid
1624refactorings. Overall, EARMO shows a good precision score
1625(68 percent) for all apps. In fact, only in 20 percent of the
1626apps, the precision is less than 50 percent. From these apps,
1627we discuss Prism, which is the app with lowest precision
1628score. We found one out of five refactorings to be valid, and
1629that one is the IGS type; three refactorings attempt to inline
1630autogenerated classes from Android build system (e.g., R,
1631BuildConfig); one attempts to inline a class that extends

TABLE 14
Description of Scenarios Generated for the
EC Validation and Duration (in Seconds)

App Scenario Duration

Calculator Same scenario as preliminary study. 17.94
GLTron Tap screen to start the game and wait

until the moto crashes.
40.08

kindmind Select each category, wait for the relaxa-
tion message, and close app.

80.06

monsterhunter Same scenario as preliminary study. 16.39
oddscalculator Select two players, {7 heart}, {8 heart}, {9

heart}, tap {calculate}, wait five seconds,
and close app.

45.83

quicksnap Take a picture and close app. 16.30
SASAbus Same scenario as preliminary study. 71.72
scrabble Assign the first four letters to the first

cells, tap {confirm}, and close app.
65.11

soundmanager Same scenario as preliminary study. 18.74
stk Wait until content is downloaded, tap

{karts}, tap first row, back, back, tap
{tracks}, tap first row, and close app.

86.55

sudowars Wait until app is loaded, tap {manual},
tap {single player}, tap {tick} button,
select first square and write values 1, 2,
3, 4, 5, and 6, tap {...}, tap {assistant}, give
up, tap yes, tap back, close app.

53.13

tapsoffire Same scenario as preliminary study. 25.96
words Select a category, tap {play}, tap {flash

card}, tap {green hand}, tap {flash card},
tap {red hand}, tap {back}, and close app.

57.34

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

http://swat.polymtl.ca/rmorales/EARMO/
http://swat.polymtl.ca/rmorales/EARMO/

IEE
E P

ro
of

1632 from android.app.Activity class which is not invalid.
1633 From the four refactorings discarded of Prism, three can be
1634 consider valid but useless, and only one will introduce
1635 regression. Later, we provide guidelines for toolsmiths
1636 interested in developing refactoring tools for Android. With
1637 respect to the total number of refactorings applied, we
1638 observe that in seven cases we apply more than 20 refactor-
1639 ings, and from this subset two of them require more than
1640 100. This validate our idea, that an automated approach can
1641 be useful for developers and software maintainers inter-
1642 ested in improving the design of their apps, but with limited
1643 budget time to perform a dedicated refactoring session for
1644 all classes existing in their app.
1645 In Table 16 we present EARMO median execution time
1646 Exec:Time, estimation values of energy consumption EC,
1647 median energy consumption of an app before (E0) and after
1648 (E0) refactoring. The difference between EC and E0,
1649 gðEC;E0Þ is calculated by subtracting EC � E0 and dividing

1650the result by E0 and the result is multiplied by 100. Simi-
1651larly, we calculate the difference between E0 and E0,
1652gðE0; E0Þ. From the statistical tests between E0, E0, the
1653p�value, and effect size (ES). The last column is the median
1654difference of battery life duration, in minutes, between the
1655original and the refactored version (Diff:Batterylife). This
1656is of special interest for software maintainers to assess if the
1657impact of applying a refactoring sequence would be notice-
1658able to end users. We provide details of how to compute the
1659last column below. This procedure has been used in previ-
1660ous works [66].
1661For each app we calculate its battery usage (in %) using
1662Equation (8) to estimate the percentage of battery charge that
1663is consumed by an app when running the defined scenario.
1664E is the energy consumption in Joules of an app (derived
1665from the median of the 30 independent runs), and V and C
1666are the voltage and electric charge (in mAh), respectively, of
1667the phone battery. For Nexus 4, V ¼ 3:8 andC ¼ 2100mAh

Batteryusage ¼ E

V
� 1000

C � 3600
� 100: (8)

16691669

1670

1671After obtaining the battery usage for both versions (origi-
1672nal, and refactored) of each app, we use it to compute the
1673battery life (in hours) using Equation (9) where ET is the
1674execution time of the app (in seconds). We consider the bat-
1675tery life of an app to be the time that it takes to drain the bat-
1676tery if the scenario associated to the app is continuously run

Batterylife ¼ ðET � 100Þ=Batteryusage
3600

: (9)
16781678

1679

1680Finally, we calculate the average battery life for each app
1681(original and refactored) and subtracted these values to
1682obtain the difference of battery life (Diff:Batterylife). Posi-
1683tive values are desired, as they mean that the battery life is
1684longer using the refactored version, while negatives values
1685mean the opposite effect.
1686Note that we did not consider apps in the validation
1687where the number of refactorings applied is one, that
1688accounts for six apps. The reason is that for these apps the
1689energy improvement estimation EI is inferior to 10 percent
1690before the manual application of refactorings, so we do not

TABLE 15
Summary of Manual Refactoring Application for the EC

Validation

App DI% EI% Discarded
ref.

Applied
ref.

Total Precision
(%)

Calculator 75 54 19 45 64 70
BlackJackTrainer 75 6 3 1 4 25
GlTron 94 26 19 13 32 41
Kindmind 80 19 7 23 30 77
MatrixCalculator 33 1 0 1 1 100
MonsterHunter 82 44 29 83 112 74
mylocation 100 2 1 1 2 50
OddsCalculator 100 15 0 6 6 100
Prism 86 9 4 1 5 20
Quicksnap 92 85 69 119 188 63
SASAbus 82 27 3 8 11 73
Scrabble 86 13 0 6 6 100
SoundManager 94 36 3 5 8 63
SpeedoMeter 100 6 1 1 2 50
STK 83 12 2 3 5 60
Sudowars 71 64 38 75 113 66
Swjournal 100 6 13 6 19 32
TapsofFire 83 89 21 139 160 89
Vitoshadm 100 4 0 2 2 100
Words 75 63 23 76 99 77

Total 614 Median 68

TABLE 16
EARMO Execution Time (Seconds), EC Estimation (J), Median Energy Consumption E0 and E0 (J), g Values,

Statistical Tests, and Difference in Battery Life (Minutes)

App Exec:Time EC E0 E0 gðEC;E0Þ gðE0; E0Þ p� value ES Diff:Batterylife

calculator 154.90 17.40 21.28 19.49 �11% �8% 1.86E-09 �0.94 2.55
gltron 55.98 242.27 256.44 252.15 �4% �2% 8.01E-08 �0.77 0.42
kindmind 34.59 17.10 18.72 18.9 �10% 1% 0.1294 0.21 �4.61
monsterhunter 237.10 13.63 16.07 16.05 �15% 0% 0.6263 �0.03 �0.82
oddscalculator 8.98 29.25 30.61 30.94 �5% 1% 0.1094 0.22 �2.06
quicksnap 418.82 11.52 15.33 15.29 �25% 0% 0.9193 �0.04 3.33
SASAbus 32.39 3.79 4.61 5.49 �31% 19% 0.7922 0.09 �2.03
scrabble 18.55 88.68 94.56 94.14 �6% 0% 0.9193 �0.03 2.45
soundmanager 25.70 1.75 1.96 2.00 �13% 2% 0.3492 0.16 1.88
stk 24.58 240.82 252.81 249.29 �3% �1% 0.1403 �0.16 0.99
sudowars 203.60 46.21 54.27 53.99 �14% �1% 0.0879 �0.20 1.07
tapsoffire 281.00 3.30 6.80 6.59 �50% �3% 0.9354 �0.02 1.97
words 119.65 25.16 27.01 25.13 0% �7% 0.0384 �0.27 29.71

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 21

IEE
E P

ro
of

1691 expect a measurable energy consumption change. In addi-
1692 tion, we also omit Swjournal , in which we applied six refac-
1693 torings out of 13, but given its low EI of 6 percent it is
1694 unlikely to report a noticeable change either.
1695 For the remaining 13 apps, we observe that the median
1696 execution time for generating the refactoring sequences is
1697 less than a minute (56 seconds). Concerning energy estima-
1698 tion (EC), the direction of the trend holds for all the apps in
1699 the testbed according to the results measured E0. Concern-
1700 ing the accuracy of the estimation, EARMO values are more
1701 optimistic than the actual measurements but in an accept-
1702 able level. There are some remarkable exceptions, like Tap-
1703 soffirewhere the difference is 50 percent. In this app, most of
1704 the refactorings are move method type (120). If we multiply
1705 120 by E0, and the result by dECðmovemethodÞ we have an
1706 energy consumption decrease of �1.64 J; 12 refactorings of
1707 inline private getter and setters type that account for �1.92 J.
1708 These two refactorings consume in total 3.56 J. The rest of
1709 the energy is divided between six IPO and one replace Hash-
1710 Map with ArrayMap. However, the impact on energy for this
1711 app is far from this value, probably because the scenario
1712 does not exercise (enough) the code that is modified by the
1713 refactorings to report a considerable gain. On the other side,
1714 STK reports the most close prediction with a difference of
1715 3 percent. The refactorings applied are three inline getter and
1716 setters. If we compare the results obtained by EARMO com-
1717 pared with the preliminary study, the energy consumption
1718 trend holds for all the apps. However it is hard to make a
1719 fair comparison because in the Preliminary study we mea-
1720 sure the effect of one instance of each anti-pattern type at a
1721 time, but in the energy consumption validation of EARMO
1722 we apply few to several refactorings. Although we assume
1723 that the effect of refactoring is aggregated, it is difficult to
1724 prove it with high precision, since we could not exercise all
1725 possible paths related to the refactored code in the proposed
1726 scenarios. Yet, the median error of gðEC;E0Þ is in acceptable
1727 level of 12 percent, like the one reported by Wan et al. [67],
1728 when estimating the energy consumption of graphic user
1729 interfaces in a testbed of 10 apps.
1730 Concerning the difference in energy consumption after
1731 refactoring, we observe that for three apps we obtain statis-
1732 tical significant results, with large effect size (results are in
1733 bold). This corroborates the findings in the preliminary
1734 study, for these apps. Although, for the rest of the apps the
1735 results are not statistically significant, we still we believe
1736 that the results are sound with respect to the energy con-
1737 sumption improvements reported. A recent work by Bane-
1738 rjee reported an energy consumption improvement from 3
1739 to 29 percent in a testbed of 10 F-Droid apps with an auto-
1740 mated refactoring approach for correcting violations of the
1741 use of energy-intensive hardware components [68]. With
1742 respect to battery life, EARMO could extend the duration
1743 (for the apps where the difference is statistically significant)
1744 of the battery from a few minutes up to 29 minutes (see the
1745 remarkable increment reported for Words). Note that to
1746 obtain a similar outcome in battery life, the proposed sce-
1747 narios should be executed continuously, draining the bat-
1748 tery from full to empty, which is not impossible, but rather
1749 unlikely. Yet, the benefits of improving design quality of the
1750 code, and potentially reducing the energy consumption of
1751 an app should not be underestimated. Not only because

1752battery life is one of the main concerns of Android users
1753and every small action performed to keep a moderate
1754energy usage in apps is well appreciated. But, even if there
1755is not a noticeable gain in energy reduction, software main-
1756tainers are safe to apply refactoring recommendations pro-
1757posed by EARMO without fearing to introduce energy
1758leaks.
1759Guidelines for toolsmiths designing refactoring recommenda-
1760tion tools.
1761We discuss some issues that should be considered for
1762toolsmiths interested in designing refactoring recommenda-
1763tion tools for Android based on our experience applying the
1764suggestions generated by EARMO. We should note that
1765the tool that we use for detecting anti-patterns, which is
1766DECOR, is not developed for Android platform. Hence, it
1767does not consider the control flow depicted in Fig. 3 and the
1768OS mechanisms of communication between apps. This
1769could generate false positives and consequently impact the
1770generation of refactoring opportunities. Toolsmiths inter-
1771ested to develop refactoring tools for mobile platforms,
1772based on anti-pattern detection tools aimed to target OO,
1773should adapt the detection heuristics to avoid generating
1774invalid refactoring operations. We discuss some strategies
1775to consider below.
1776Excluding Classes Autogenerated by Android Build System.
1777The classes <app package>.R, and <app package>.

1778BuildConfig should not be considered for analysis of anti-
1779patterns as they are automatically generated when (re)
1780building an app.
1781Classes Extending Classes from android.content Package
1782and its Corresponding Subpackages. This package provides clas-
1783ses for accessing and publishing data on a mobile device
1784and messaging between apps. As an example, consider
1785android.content.BroadcastReceiver, which allows
1786an app to receive notifications from relevant events beyond
1787the apps flow, e.g., a user activating the airplane mode. An
1788app can receive broadcasts in two different ways. (1) declar-
1789ing a broadcast receiverin the apps manifest; (2) creating an
1790instance of class BroadcastReceiver, and register within
1791a context [69]. We focus in the first method, as is the one that
1792could lead developers to introduce regression (even using
1793IDEs refactoring tool support). In manifest-declared receivers,
1794the receiver element is registered in the apps manifest, and a
1795new class is extended from BroadcastReceiverwhich
1796requires to implement onReceive(context, Intent)

1797method, to receive the contents of the broadcast. Let us
1798briefly discuss the main issue when generating refactoring
1799opportunities for classes extending from android.content
1800packages (in this example we focus in BroadcastRe-

1801ceiver) depending on the type of refactoring to be applied.
1802Collapse hierarchy refactoring is not considered as Broadcas-
1803tReceiver does not belong to the apps package. Replace
1804inheritance with delegation will introduce regression when
1805removing the hierarchy relationship with Broadcast-

1806Receiver. We observe the same issue with inline classwhen
1807trying to move the methods and attributes to other potential
1808class.Move methodwill introduce regression too, when trying
1809tomove inheritedmethods like onReceiveto another class.
1810Collapsing Hierarchy of Classes Registered as Android Activ-
1811ity. When a refactoring operation consists of applying
1812Collapse hierarchy refactoring to a class that extends from

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of

1813 Activity , it is also necessary to update the apps manifest
1814 with the name of the parent class.
1815 Replacing Hashmap with ArrayMap. It is necessary to
1816 replace the imports for android.support.v4.util

1817 when Android API is less than 19, or android.util oth-
1818 erwise. It is important to mention that ArrayMap is
1819 defined as final, so it limits the possibility to derive a new
1820 implementation from this class, contrary to HashMap and
1821 its derived classes (e.g., LinkedHashMap).
1822 RQ3: To what extent is design quality improved by EARMO
1823 according to an external quality model?
1824 In RQ1, we have shown that EARMO is able to find opti-
1825 mal refactoring sequences to correct anti-patterns while con-
1826 trolling for energy consumption. Although anti-patterns
1827 occurrences are good indicators of design quality, a soft-
1828 ware maintainer might be interested in knowing whether
1829 the applied refactorings produce code that is for example
1830 readable, easy to modify and–or extend. To verify such
1831 high-level design quality attributes, we rely on the QMOOD
1832 quality model. Table 17 presents the maximum and mini-
1833 mum quality gain achieved after applying the refactorings
1834 suggested by EARMO, for each app studied and for each
1835 QMOOD quality attribute.

1836 � Reusability, understandability and flexibility. In general,
1837 the refactored apps report a slight decrease that
1838 ranges from 0.9 to 4 percent for these attributes. In the
1839 case of reusability, the prism app is an outlier, with a
1840 medium deterioration of reusability between 31 and
1841 44 percent. EARMO finds two refactoring sequences
1842 (or two non-dominated solutions in the Pareto front)
1843 that are comprised of five refactoring operations.
1844 These refactorings are three inline operations, which
1845 have negatively impacted the reusability value
1846 because of the weight (i.e., 0.5) that reusability assigns
1847 to the number of entities in the system (DSC metric).

1848The fourth refactoring is Inline private getters and set-
1849ters, which negatively affects the cohesion among
1850methods (CAM) because one getter is inlined in the
1851system. The last refactoring of the first refactoring
1852sequence is replace inheritance with delegation which
1853negatively impacts the coupling between classes
1854(DCC), leading to a drop of 44.36 percent (minimum
1855value) of reusability. In the second refactoring
1856sequence, the last refactoring is collapse hierarchy
1857which negatively impact DSC metric as well. Con-
1858cerning understandability, we observe little variation
1859through all the apps, making it the least impacted
1860attribute among the five attributes studied. Finally,
1861for flexibility we report a median of �4.07 percent.
1862One remarkable case is Mylocation, with 100 percent
1863gain for this attribute. It has one solution comprised
1864of two refactorings, inline class and move resource
1865request to visible method. While the former one does not
1866have a direct impact on the design, the inline of a class
1867positively impacted this attribute because the number
1868of classes is small (only nine classes). Similarly, Odd-
1869scalculator contains one solutionwith seven inline class
1870refactorings, and one inline private getter. On the other
1871hand, Swjournal has one solution composed mainly
1872by move method refactorings (19), and one inline class.
1873The inline class operation is likely responsible for the
1874drop of the value of the attribute to 45 percent.
1875� Effectiveness. We report a small gain of 3.14 percent,
1876with two outliers (Oddscalculator and Soundmanager).
1877As we discussed before, Oddscalculator is mainly com-
1878posed of inline class refactorings. Soundmanager has
1879two solutions, both contain nine inline classes, six inline
1880getters/setters, and two replace HashMap usage. In addi-
1881tion, the second solution includes introduce parameter-
1882object refactoring, which adds a new class to the
1883design, has the highest effectiveness value for this app.

TABLE 17
Quality Gain (Min. and Max.) Values Derived from QMOOD Design Quality Attributes for Each App

Reusability Understandability Flexibility Effectiveness Extendibility

App Name Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

blackjacktrainer �3.96 �3.96 �4.05 �4.05 �11.13 �11.13 9.29 9.29 94.86 94.86
calculator �1.06 �0.58 �1.00 0.11 �14.52 6.73 1.85 3.18 13.51 21.07
gltron �8.19 �2.83 �4.25 �2.39 �10.54 �4.93 3.79 6.12 38.01 40.79
kindmind �1.10 �0.67 0.87 0.93 �0.12 1.78 �0.25 0.36 58.08 58.62
matrixcalculator 0.00 2.16 0.05 0.33 0.34 35.64 �0.51 �0.25 89.87 100.36
monsterhunter 0.08 0.10 0.00 0.10 0.43 0.73 0.42 0.48 57.22 57.69
mylocation �1.56 �1.56 1.49 1.49 100.00 100.00 7.39 7.39 1.25 1.25
oddscalculator �5.31 �5.31 �5.28 �5.28 70.86 70.86 28.93 28.93 42.15 42.15
prism �44.36 �31.27 �8.14 �6.10 �14.46 �10.60 7.53 10.22 65.17 78.30
quicksnap �2.74 �2.72 �3.77 �3.51 �39.15 �37.23 1.89 2.25 4.15 4.91
sasabus �0.24 �0.24 �0.07 �0.07 �0.41 �0.41 1.11 1.11 64.57 64.57
scrabble �8.41 �7.30 �0.80 �0.05 �13.41 �10.20 9.79 12.77 �1.67 1.60
soundmanager �7.39 �5.67 �5.02 �3.40 �14.65 �5.92 24.11 26.17 32.32 44.32
speedometer �0.93 �0.93 �1.22 �1.22 55.56 55.56 9.72 9.72 �124.16 �124.16
stk �0.01 0.53 0.18 0.34 1.21 3.74 1.35 1.35 55.05 55.96
sudowars �2.71 �0.76 �2.10 �1.12 �12.42 �5.43 �0.94 0.24 25.16 30.52
swjournal �4.14 �4.14 �2.45 �2.45 �45.33 �45.33 0.87 0.87 6.88 6.88
tapsoffire �0.39 �0.07 �2.97 �2.90 �13.36 �12.24 4.87 4.98 18.38 19.13
vitoshadm �0.21 �0.21 0.10 0.10 8.71 8.71 3.79 3.79 153.06 153.06
words 2.11 3.92 0.44 0.81 4.19 8.11 �6.27 �3.70 72.88 74.27

Median values for
all PF solutions

�1.24 �0.94 �4.07 3.14 40.78

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 23

IEE
E P

ro
of

1884 � Extendibility. For this attribute we report a consider-
1885 able improvement of 41 percent. We attribute this
1886 increment to the removal of unnecessary inheritance
1887 (through inline class, collapse hierarchy and refused
1888 bequest refactorings). In fact, the extendibility function
1889 assigns a high weight to metrics related to hierarchy
1890 (i.e., MFA, ANA). These are good news for developers
1891 interested in improving the design of their apps
1892 through refactoring, as the highly-competitive market
1893 of Android apps requires adding new features often
1894 and in short periods of time. Hence, if they interleave
1895 refactoring before the release of a new version, it will
1896 be easier to extend the functionality of their apps.
1897

1898 We conclude that our proposed approach EARMO can improve
1899 the design quality of an app, not only in terms of anti-patterns
1900 correction, but also their extendibility, and effectiveness.

1901 RQ4: Can EARMO generate useful refactoring solutions for
1902 mobile developers?
1903 We conducted a qualitative study with the developers of
1904 the 20 apps studied in this paper to gather their opinion
1905 about the refactoring recommendations of EARMO. The
1906 study took place between August 17th and September 17th
1907 2016. 23 developers, identified as authors in the repository of
1908 the apps, were contacted but only 8 responded providing
1909 feedback for a total of 8 apps. Table 18 provides some back-
1910 ground information on the developers that took part in our

1911qualitative study. Each developer has more than 3 years of
1912experience and their primary programming language is
1913Java. Half of the developers use Android Studio to program.
1914100 percent of them considered refactorings to be useful but
1915only 12 percent said that they perform refactoring frequently.
1916We asked each developer to name the three refactorings that
1917they perform the most. As we can see in Table 18, the most
1918frequent refactorings performed by the developers are: to
1919remove dead code, move method, inline class, extract class/
1920superclass, collapse hierarchy, and extract interface. They
1921also mentioned to extract repetitive code into new functions
1922(extract method), and adjusting data structures.
1923For each app, we randomly selected three refactorings
1924for each refactoring type, from the refactoring sequence in
1925the Pareto front with the highest energy gain. We submitted
1926the proposed refactorings to the developers of the app. We
1927asked the developers if they accept the solution proposed
1928by EARMO, and if not, to explain why. We also asked if
1929there were any modification(s) that they would like to sug-
1930gest to improve the proposed refactoring recommendations.
1931In Fig. 14, we present the acceptance ratio of the refactoring
1932solutions proposed by EARMO, by app (left), and by anti-
1933pattern (right).
1934We can observe that for four apps (prism, scrabble, stk,
1935matrixcalculator), 100 percent of the refactorings suggested
1936by EARMO were accepted. For three other apps (calculator,
1937kindmind, oddscalculator) the acceptance ratio range from 40
1938to 57 percent. The developer of the GLTron app rejected all

TABLE 18
Background Information on the Surveyed Developers

App Name Interval Age Experience Prog. Language IDE Top refactorings

Calculator 18 to 24 5-9 years Java Android Studio Extract method, remove dead code, extract or remove
new class/interface

OddsCalculator 35 to 44 3-4 years Java Eclipse Move type to new file, move method/field.
Kindmind 25 to 34 <1 year Java Android Studio Renaming variables and classes, extract method/class
GLTron 35 to 44 3-4 years Swift XCode Adjusting data structures, move method, extract

class/superclass, Inline class, Collapse hierarchy and
extract interface

Scrabble 35 to 44 3-4 years python vim Extract method, remove dead code, add encapsulation
Prism 45 to 54 10 years or more Java Eclipse Extract variable, extract method, rename
Matrixcalc 18 to 24 3-4 years Java Android Studio Refactoring duplicate code, renaming classes/meth-

ods and variables, remove dead code
STK 18 to 24 1-2 years Java Android Studio Extract method, extract class

Fig. 14. Acceptance ratio of the refactorings proposed by EARMO.

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of

1939 the refactorings recommended for the app. However, some
1940 of the reasons behind her/his rejections are not convincing
1941 as we will discuss in the following paragraph. Overall, 68
1942 percent of recommendations suggested by EARMO were
1943 accepted by developers.
1944 The refactoring with the highest acceptance ratio is inline
1945 private getters and setters, while the one with the lowest
1946 acceptance ratio is replace hashmap with arraymap. The only
1947 app for which replace hashmap with arraymap was recom-
1948 mended is GLTron. The argument provided by the devel-
1949 oper of GLTron to justify his disapproval of the refactoring
1950 is that because “GLTron runs on many platforms, introduc-
1951 ing too many Android specific APIs would be a bad idea
1952 from a portability point of view”. He also mentioned that
1953 because the hashmap contains few objects, the impact on
1954 performance is minimal. However, the Android documen-
1955 tation [48] emphasizes the advantages of using ArrayMap
1956 when the number of elements is small, in the order of three
1957 digits or less. In addition to this, the performance in energy
1958 consumption should not be ignored.
1959 Move method refactoring has an acceptance rate of
1960 25 percent. The following reasons were provided by devel-
1961 opers to justify their decision to reject some move method
1962 refactorings suggested by EARMO. For the calculator app,
1963 the developer rejected two suggested move method refactor-
1964 ings, arguing that the candidate methods’ concerns do not
1965 belong to the suggested target classes. However, s/he
1966 agrees that the source classes are Blob classes that should be
1967 refactored. We obtained a similar answer from the devel-
1968 oper of Kindmind, who also agrees that the classes identified
1969 by EARMO are instances of Blob, but proposes other target
1970 classes as well. To justify her/his rejection of all the three
1971 move method refactorings that were suggested for her/his
1972 app, the developer of GLTron argued that there are more
1973 important issues than moving a single method. However,
1974 she/he didn’t indicate what were those issues.
1975 Introduce Parameter Object. We found long-parameter list
1976 instances in matrixcalculator, STK and GLTron, and its only
1977 in GLTron that the developer rejected the two refactorings
1978 proposed, claiming that the new object will bloat the calling
1979 code of the method; and for the second one, that the method
1980 has been already refactored in a different way.
1981 Collapse Hierarchy. We found two instances of speculative
1982 generality, one in Prism (which was accepted) and another in
1983 Calculator; the latter one was rejected because the collapsed
1984 class (which is empty) implements a functionality in the paid
1985 version. The developer wanted to keep the empty class to
1986 maintain compatibility between the two versions of the app
1987 (i.e., free and paid versions). However, the developer agrees
1988 that the solution proposed by EARMO is correct, and will
1989 consider to remove the empty class in the future.
1990 Inline Class. Two inline class refactorings were proposed
1991 by EARMO, one in Scrabble and another in Oddscalculator.
1992 The former one was rejected by the developer because she/
1993 he considers that inlining the lazy class will change the idea
1994 of the design.
1995 Inline Private Getters and Setters. EARMO recommended
1996 Inline private getters and setters refactorings in 7 out of the 8
1997 apps for which we received developers’ feedback. From a
1998 total of 11 Inline private getters and setters operations that were
1999 suggested by EARMO, only one was rejected, and this was in

2000GLTron. The developer ofGLTron argued that amethod that is
2001called only once require no performance optimizations.
2002The majority of recommendations made by EARMO
2003were received favorably. For those that were rejected, it was
2004not because they were incorrect or invalid, but because they
2005affected certain aspects of the design of the apps that devel-
2006opers did not wanted to change. The recommendations
2007made by EARMO raised the awareness of developers about
2008flaws in the design of their apps. This was true even when
2009the suggested fixes (i.e., the refactorings) for these design
2010flaws were rejected by the developers.

2011Hence, we conclude that EARMO recommendations are useful
2012for developers. We recommend that developers use EARMO
2013during the development of their apps, since it can help them
2014uncover design flaws in their apps, and improve the design
2015quality and energy consumption of their apps.

20166 THREATS TO VALIDITY

2017This section discusses the threats to validity of our study
2018following common guidelines for empirical studies [70].
2019Construct validity threats concern the relation between the-
2020ory and observation. This is mainly due to possible mistakes
2021in the detection of anti-patterns, when applying refactor-
2022ings. We detected anti-patterns using the widely-adopted
2023technique DECOR [12] and the guidelines proposed by
2024Gottschalk and Android guidelines for developers [6], [32].
2025However, we cannot guarantee that we detected all possible
2026anti-patterns, or that all those detected are indeed true anti-
2027patterns. Concerning the application of refactorings for the
2028preliminary study, we use the refactoring tool support of
2029Android Studio and Eclipse, to minimize human mistakes.
2030In addition, we verify the correct execution of the proposed
2031scenarios and inspect the ADBMonitor to avoid introducing
2032regression after a refactoring was applied. Concerning the
2033correction improvement reported by EARMO, we manually
2034validated the outcome of refactorings performed in the
2035source code and the ones applied to the abstract model, to
2036ensure that the output values of the objective functions cor-
2037respond to the changes performed. However, we rely on the
2038correct representation of the code generated by Ptidej Tool
2039Suite [60]. We chose Ptidej Tool Suite because it is a mature
2040project with more than ten years of active development, and
2041it has been applied in several studies on anti-patterns,
2042design patterns, and software evolution.
2043Considering energy measurements we used the same
2044phone model used in other papers. Plus our measurement
2045apparatus has a higher or the same number of sampling bits
2046as previous studies and our sampling frequency is one
2047order of magnitude higher than past studies. Overall, we
2048believe our measurements are more precise or at least as
2049precise as similar previous studies. As in most previous
2050studies we cannot exclude the impact of the operating sys-
2051tem. What is measured is a mix of Android and application
2052actions. We mitigate this by running the application multi-
2053ple times and we process energy and execution traces to
2054take into account only the energy consumption of method
2055calls belonging to the app. Because interpreted code runs
2056slowly when profiling is enabled, it is probable that the
2057energy consumption associated with each method call is

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 25

IEE
E P

ro
of

2058 higher. However, given that the profiling was enabled in all
2059 the experiments, we can assume that the instrumentation
2060 overhead introduced by the production of execution traces
2061 is constant between different runs of the same scenario.
2062 Threats to internal validity concern our selection of anti-
2063 patterns, tools, and analysis method. In this study we used a
2064 particular yet representative subset of anti-patterns as a proxy
2065 for design quality. Regarding energymeasurements, we com-
2066 puted the energy using well know theory and scenarios were
2067 replicated several times to ensure statistical validity. From the
2068 set of anti-patterns studied, we target one that is related to the
2069 use of device sensors, that is Binding Resources too early.
2070 Because our setup is measured inside a building, device loca-
2071 tion might be computed using Wi-Fi instead of GPS if the
2072 reception is not good enough. In that case, it is likely to be less
2073 than the cost of using GPS sensor outdoors. This also applies
2074 to network connections, where the cost incurred for connect-
2075 ing throughWi-Fi is likely to be less than the one incurred for
2076 using a cellular network. Additionally, in the evaluation of
2077 EARMO we use MonkeyRunner to communicate with apps
2078 though simulated signals rather than signals triggered
2079 through real sensors (for example, touchscreens or gravity
2080 sensors) onmobile devices, that could be regarded as not real-
2081 istic. In case that a more realistic measurement is required, we
2082 can substitute intrusive methods, like using Monkeyrunner,
2083 with a robot arm that uses the same cyber-physical interface
2084 as the human user [71].
2085 As explained in the construct validity our measurement
2086 apparatus is at least as precise as previous measurement
2087 setups.
2088 Conclusion validity threats concern the relation between
2089 the treatment and the outcome. We paid attention not to
2090 violate assumptions of the constructed statistical models. In
2091 particular, we used a non-parametric test, Mann-Whitney U
2092 Test, Cliff’s d, that does not make assumptions on the under-
2093 lying data distribution.
2094 Reliability validity threats concern the possibility of repli-
2095 cating this study. The apps and tools used in this study are
2096 open-source.
2097 It is important to notice that the same model of phone
2098 and version of Android operating system should be used to
2099 replicate the study. In addition, considering the scenarios
2100 defined for each application, they are only valid for the
2101 apps versions used in this study, which are also available in
2102 our replication package. The reason is that the scenarios
2103 were collected considering approaches based on absolute
2104 coordinates and not on the identifier of components in the
2105 graphical user interface (GUI). Therefore, if another model
2106 of phone is used or the app was updated and the GUI
2107 changed, the scenarios will not be valid.
2108 Threats to external validity concern the possibility to general-
2109 ize our results. These results have to be interpreted carefully
2110 as they may depend on the specific device where we ran the
2111 experiments, the operating system and the virtual machine
2112 (VM) used by the operating system. For the former one, it is
2113 well known that in ART (Android Run Time used in this
2114 work) the apps are compiled to native code once, improving
2115 the memory and CPU performance, while previous VM for
2116 Android (Dalvik) runs along with the execution of an app,
2117 andmay perform profile-directed optimizations on the fly. To
2118 validate this threat, we execute the energy consumption

2119validation using Dalvik and ART VMs and found 	1 percent
2120of difference in the median of gðE0; E0Þ values for the apps
2121used in the energy consumption validation. Hence, we sug-
2122gest that our results area valid for both VMs, for the set of
2123anti-patterns, apps, and scenarios used in thiswork.
2124Our study focuses on 20 android apps with different
2125sizes and belonging to different domains from F-Droid,
2126which is one of the largest repositories of open-source
2127Android apps. Still, it is unclear if our findings would gen-
2128eralize to all Android applications. Yet, more studies and
2129possibly a larger dataset is desirable. Future replications of
2130this study are necessary to confirm our findings. External
2131validity threats do not only apply to the limited number of
2132apps, but also to the way they have been selected (ran-
2133domly), their types (only free apps), and provenance (one
2134app store). For this reason this work is susceptible to the
2135App Sampling Problem [72], which exists when only a sub-
2136set of apps are studied, resulting in potential sampling bias.
2137Nevertheless, we considered apps from different size and
2138domains, and the anti-patterns studied are the most critical
2139according to developers perception [10], [73].

21407 RELATED WORK

2141In this section, we discuss related works about automated-
2142refactoring, Android anti-patterns, and the energy con-
2143sumption of mobile apps.

21447.1 Automated-Refactoring

2145Harman and Tratt [21] were the first to formulate the problem
2146of refactoring as a multiobjective optimization (MO) problem.
2147They defined two conflicting metrics as objectives to satisfy,
2148and demonstrated the benefits of the Pareto optimality for the
2149Move method refactoring. Ouni et al. [64] proposed a MO
2150approach based onNSGA-II, with three conflicting objectives:
2151removing anti-patterns, preserving semantic coherence, and
2152history of changes. For the first objective, they generated a set
2153of rules to characterize anti-patterns from a set of bad design
2154examples. The second objectivemeasure the semantic similar-
2155ity among classes. Finally, history of changes refers to the sim-
2156ilarity of the refactoring proposed with previous refactorings
2157applied in the past. Mkaouer et al. [74] proposed an extension
2158of this work, by allowing user’s interaction with the refactor-
2159ing solutions. Their approach consists of the following steps:
2160(1) a NSGA-II algorithm proposes a set of refactoring sequen-
2161ces; (2) an algorithm ranks the solutions and presents them to
2162the user who will judge the solutions; (3) a local-search algo-
2163rithm updates the set of solutions after n number of interac-
2164tions with the user or when m number of refactorings have
2165been applied.
2166Our proposed approach differs from the above-mentioned
2167works in the following points: i) the context of our approach is
2168mobile apps, with an emphasis on energy consumption; ii)
2169the level of automation in our approach is higher, as it does
2170not depend on additional input from the user with respect to
2171anti-patterns detection (e.g., bad design examples).
2172Using four single-objective metaheuristics and a dataset
2173of 1,705 Mylyn interaction histories, Morales et al. [49] pro-
2174posed an approach to guide the refactoring search using
2175task context information. The difference with this work is
2176that we focus on mobile apps using a multiobjective

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

IEE
E P

ro
of

2177 formulation, while the previous work targets only OO anti-
2178 patterns. In EARMO we do not leverage task context infor-
2179 mation to guide the search for refactoring solutions.
2180 In a previous work [31], we proposed a multiobjective
2181 approach to remove anti-patterns while controlling for test-
2182 ing effort, and show that it is possible to improve unit test-
2183 ing effort by 21 percent. This previous work differs from
2184 EARMO in the targeted systems (desktop vs mobile), and
2185 the fact that energy consumption was not considered, but
2186 the testing effort of classes.
2187 Recently, Banerjee et al. [68] proposed an approach to
2188 refactor mobile apps by relying on energy-consumption
2189 guidelines to control for energy-intensive device compo-
2190 nents. They report a reduction in energy consumption from
2191 3 to 29 percent of in their testbed which was comprised of
2192 10 F-Droid apps. While this work focuses only on improving
2193 the energy consumption, our work aims to improve design
2194 quality by correcting OO and android anti-patterns. In addi-
2195 tion, we examined the impact of different anti-patterns on
2196 the energy consumption of apps and we evaluated the use-
2197 fulness of our proposed refactoring approach using three
2198 different multiobjective metaheuristics.

2199 7.2 Mobile Anti-Patterns

2200 Linares-V�asquez et al. [75] leveraged DECOR to detect 18
2201 OO anti-patterns in mobile apps. Through a study of 1,343
2202 apps, they have shown that anti-patterns negatively impact
2203 the fault-proneness of mobile apps. In addition, they found
2204 that some anti-patterns are more related to specific catego-
2205 ries of apps.
2206 Verloop [76] leveraged refactoring tools, such as PMD9 or
2207 JDeodorant [77] to detect code smells in mobile apps, in
2208 order to determine if certain code smells have a higher like-
2209 lihood to appear in the source code of mobile apps. In both
2210 works, the authors did not considered Android-specific
2211 anti-patterns.
2212 Reimann et al. [78] proposed a catalog of 30 quality
2213 smells specific to the Android platform. These smells were
2214 reported to have a negative impact on quality attributes like
2215 consumption, user experience, and security. Reimann et al.
2216 also performed detections and corrections of certain code
2217 smells using the REFACTORY tool [79]. However, this tool
2218 has not been validated on Android apps [10].
2219 Li et al. [46] investigate the impact of android developing
2220 practices and found that accessing class fields, extracting array
2221 length into a local variable in a for-loop and inline getter and
2222 setters can reduce the energy consumption of an app in test
2223 harness developed specifically for this purpose.
2224 Hecht et al. [10] analyzed the evolution of the quality of
2225 mobile apps through the analysis of 3,568 versions of 106 pop-
2226 ular Android apps from the Google Play Store. They used an
2227 approach, called Paprika, to identify three object-oriented and
2228 four Android-specific anti-patterns from the binaries of
2229 mobile apps. Recently, they also evaluated the impact of
2230 removing three types of Android anti-patterns (two of them
2231 also studied in this work, e.g., HashMap usage, and private get-
2232 ters and setters) using a physical measurement setup [80].
2233 Our proposed approach differs from these previous works
2234 in the sense that beside detecting anti-patterns inmobile apps,

2235we propose a multiobjective approach to generate optimal
2236sequences of refactorings that achieve amaximum removal of
2237anti-patterns from the mobile apps, while controlling for
2238energy consumption. In this way we avoid a direct aggrega-
2239tion of different, potentially conflicting objectives, allowing
2240software maintainers to select among different trades or
2241achieve a compromise between the two of them.
2242We validate our results by measuring the energy con-
2243sumption of apps on a real mobile phone.

22447.3 Energy Consumption

2245There are several works on the energy consumption of
2246mobile apps [55], [81], [82], [83], [84], [85].
2247Some studies proposed software energy consumption
2248frameworks [55] and tools [81] to analyze the impact of soft-
2249ware evolution on energy consumption.
2250Green Miner [55] is a dedicated hardware mining soft-
2251ware repositories testbed. The Green Miner physically meas-
2252ures the energy consumption of Android mobile devices
2253and automates the reporting of measurements back to
2254developers and researchers. A Green Miner web service10

2255enables the distribution and collection of green mining tests
2256and their results. The hardware client unit consists of an
2257Arduino, a breadboard with an INA219 chip, a Raspberry Pi
2258running the Green Miner client, a USB hub, and a Galaxy
2259Nexus phone (running Android OS 4.2.2) which is con-
2260nected to a high-current 4.1 V DC power supply. Voltage
2261and amperage measurement is the task of the INA219 inte-
2262grated circuit which samples data at a frequency of 50 Hz.
2263Using this web service, users can define tests for Android
2264apps and run these tests to obtain and visualize information
2265related to energy consumption.
2266Energy models can be provided by a Software Environ-
2267ment Energy Profile (SEEP) whose design and development
2268enables the per instruction energy modeling. Unfortunately,
2269it is not common practice for manufacturers to provide
2270SEEPs. Because of that, different approaches have been pro-
2271posed to measure the energy consumption of mobile apps.
2272Pathak et al. [86] proposed eprof, a fine-grained energy pro-
2273filer for Android apps, that can help developers understand
2274and optimize their apps energy consumption. In [87],
2275authors proposed the software tool eLens to estimate the
2276power consumption of Android applications. This tool is
2277able to estimate the power consumption of real applications
2278to within 10 percent of ground-truth measurements. One of
2279the most used energy hardware profilers is the Monsoon
2280Power Monitor which has been used in several works. By
2281using this energy hardware profiler a qualitative explora-
2282tion into how different Android API usage patterns can
2283influence energy consumption in mobile applications has
2284been studied by Linares-Vasquez et al. [88].
2285Other works aimed to understand software energy con-
2286sumption [83], its usage [15], or the impact of users’ choices
2287on it [84], [89].
2288Da Silva et al. [17] analyzed how the inline method refactor-
2289ing impacts the performance and energy consumption of
2290three embedded software written in Java. The results of their
2291study show that inline methods can increase energy con-
2292sumption in some instanceswhile decreasing it in others.

9. https://pmd.github.io/ 10. https://pizza.cs.ualberta.ca/gm/index.py

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 27

https://pizza.cs.ualberta.ca/gm/index.py

IEE
E P

ro
of

2293 Sahin et al. [90] investigated how high-level design deci-
2294 sions affect an application’s energy consumption. They dis-
2295 cuss how mappings between software design and power
2296 consumption profiles can provide software designers and
2297 developers with insightful information about their soft-
2298 ware power consumption behavior. In another work, Sahin
2299 et al. [15] investigated the impact of six commonly-used
2300 refactorings on 197 apps. The results of their study have
2301 shown that refactorings impact energy consumption and
2302 that they can either increase or decrease the amount of
2303 energy used by an app. The findings of also highlighted
2304 the need for energy-aware refactoring approaches that can
2305 be integrated in IDEs.
2306 Banerjee et al. [91] proposed a technique to identify
2307 energy hotspots in Android apps by the generation of test
2308 cases containing a sequence of user-interactions. They eval-
2309 uate their technique using a testbed of 30 apps from F-Droid.
2310 Pinto [92] suggested a refactoring approach to improve
2311 the energy consumption of parallel software systems. The
2312 approach was manually applied to 15 open source projects
2313 and reported an energy saving of 12 percent.
2314 Li et al. [93] proposed an approach to transform web
2315 apps to improve energy consumption of mobile apps and
2316 achieved an improvement of 40 percent, with an acceptance
2317 rate of 60 percent among the users in a testbed of seven web
2318 apps. To address the same problem, but using multiobjec-
2319 tive technique, Linares-V�asquez et al. [94] proposed an
2320 approach to generate energy-friendly color palettes that are
2321 consistent with respect to the original design in a testbed of
2322 25 apps.
2323 Wan et al. [67] propose a technique for detecting graphic
2324 user interfaces that consumes more energy than desirable.
2325 Their energy prediction estimation reached 12 percent com-
2326 pared to the real measurements on a testbed of 10 apps
2327 Bruce et al. [95] leverage Genetic Improvement to improve
2328 the energy consumption of three MiniSAT downstream
2329 apps achieving 25 percent of improvement.
2330 Manotas et al. [96] proposed a framework (SEEDS) to
2331 automatically select the most energy efficient Java’s Collec-
2332 tions API and achieve 17 percent of energy usage improve-
2333 ment in a testbed of seven Java apps.
2334 Hecht et al. [18] conducted an empirical study focusing
2335 on the individual and combined performance impacts of
2336 three Android performance anti-patterns on two open-
2337 source Android apps. These authors evaluated the perfor-
2338 mance of the original and corrected apps on a common user
2339 scenario test. They reported that correcting these Android
2340 code smells effectively improves the user interface and
2341 memory performance.
2342 Our work differs from the ones presented in this category
2343 since we aim to improve the design quality of the apps,
2344 using anti-patterns as proxy for design quality, while maxi-
2345 mizing energy efficiency. Therefore, our work contributes
2346 to fill a gap in the literature.

2347 8 CONCLUSION AND FUTURE WORK

2348 In this paper we introduce EARMO, a novel approach for
2349 refactoring mobile apps while controlling for energy con-
2350 sumption. This approach aims to support the improvement
2351 of the design quality of mobile apps through the detection

2352and correction of Object oriented and Android anti-
2353patterns. To assess the performance of EARMO, we imple-
2354mented our approach using three evolutionary multiobjec-
2355tive techniques and we evaluated it on a benchmark of
235620 free and open-source Android apps, having different
2357sizes and belonging to various categories. The results of our
2358empirical evaluation show that EARMO can propose solu-
2359tions to remove a median of 84 percent of anti-patterns,
2360with a median execution time of less than a minute. We also
2361quantify the battery energy gain of EARMO and found that
2362in a multimedia app, when the proposed scenario is exe-
2363cuted continuously until the battery drained out, it could
2364extend battery life by up to 29 minutes.
2365We also demonstrated that in the instance of search space
2366explored by the metaheuristics implemented, different com-
2367promise solutions are found, justifying the need for a multi-
2368objective formulation.
2369Concerning the quality of the solutions proposed, we
2370manually evaluated the precision of the sequences gener-
2371ated by EARMO and obtained of median 68 percent preci-
2372sion score. We study the cases where some of the
2373refactorings in a sequence are not valid and provide guide-
2374lines for toolsmiths to improve the precision of automated
2375refactoring approaches.
2376We also evaluated the overall design quality of the refac-
2377tored apps in terms of five high-level quality attributes
2378assessed by an external model, and reported gains in terms
2379of understandability, flexibility, and extendibility of the
2380resulting designs.
2381We conducted a qualitative study to assess the quality of
2382the refactoring recommendations made by EARMO from the
2383point of view of developers. Developers found 68 percent of
2384refactorings suggested by EARMO to be very relevant.
2385As future work, we intend to extend our approach to
2386detect and correct more mobile anti-patterns. We also plan
2387to apply EARMO on larger datasets, and further evaluate it
2388through user studies with mobile apps developers.

2389ACKNOWLEDGMENTS

2390This work has been supported by the Natural Sciences and
2391Engineering Research Council of Canada (NSERC) and
2392Consejo Nacional de Ciencia y Tecnolog�ıa, M�exico
2393(CONACyT).

2394REFERENCES

2395[1] G. Anthes, “Invasion of the mobile apps,” Commun. ACM, vol. 54,
2396no. 9, pp. 16–18, Sep. 2011. [Online]. Available: http://doi.acm.
2397org/10.1145/1995376.1995383
2398[2] J. Voas, J. B. Michael, and M. van Genuchten, “The mobile soft-
2399ware app takeover,” IEEE Softw., vol. 29, no. 4, pp. 25–27, Jul. 2012.
2400[3] D. L. Parnas, “Software aging,” in Proc. 16th Int. Conf. Softw. Eng.,
24011994, pp. 279–287.
2402[4] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus,
2403“Does code decay? Assessing the evidence from change manage-
2404ment data,” IEEETrans. Softw. Eng., vol. 27, no. 1, pp. 1–12, Jan. 2001.
2405[5] M. Gottschalk, J. Jelschen, and A. Winter, “Energy-efficient code
2406by refactoring,” Softwaretechnik Trends, vol. 33, no. 2, pp. 23–24,
2407May 2013.
2408[6] Android performance tips. Jun. 2016. [Online]. Available: https://
2409developer.android.com/training/articles/perf-tips.html
2410[7] F. Khomh, M. D. Penta, Y.-G. Gueheneuc, and G. Antoniol, “An
2411exploratory study of the impact of antipatterns on class change-
2412and fault-proneness,” Empirical Softw. Eng., vol. 17, no. 3, pp. 243–
2413275, Jun. 2012.

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

http://doi.acm.org/10.1145/1995376.1995383
http://doi.acm.org/10.1145/1995376.1995383
https://developer.android.com/training/articles/perf-tips.html
https://developer.android.com/training/articles/perf-tips.html

IEE
E P

ro
of

2414 [8] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan,
2415 “Predicting bugs using antipatterns,” in Proc. 29th Int. Conf. Softw.
2416 Maintenance, 2013, pp. 270–279.
2417 [9] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolu-
2418 tion and impact of code smells: A case study of two open source
2419 systems,” in Proc. 3rd Int. Symp. Empirical Softw. Eng. Meas., 2009,
2420 pp. 390–400.
2421 [10] G. Hecht, B. Omar, R. Rouvoy, N. Moha, and L. Duchien,
2422 “Tracking the software quality of android applications along their
2423 evolution,” in Proc. 30th IEEE/ACM Int. Conf. Automated Softw.
2424 Eng., Nov. 2015, Art. no. 12. [Online]. Available: https://hal.inria.
2425 fr/hal-01178734
2426 [11] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution
2427 of bad smells in object-oriented code,” in Proc. 7th Int. Conf. Qual-
2428 ity Inf. Commun. Technol., 2010, pp. 106–115.
2429 [12] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A. Le Meur,
2430 “DECOR: A method for the specification and detection of code
2431 and design smells,” IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20–
2432 36, Jan./Feb. 2010.
2433 [13] R. Marinescu, “Detection strategies: Metrics-based rules for
2434 detecting design flaws,” in Proc. IEEE Int. Conf. Softw. Maintenance,
2435 2004, pp. 350–359.
2436 [14] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant:
2437 Identification and removal of type-checking bad smells,” in Proc.
2438 12th Eur. Conf. Softw. Maintenance Reengineering, 2008, pp. 329–331.
2439 [15] C. Sahin, L. L. Pollock, and J. Clause, “How do code refactorings
2440 affect energy usage?” in Proc. Int. Symp. Empirical Softw. Eng.
2441 Meas., 2014, pp. 36:1–36:10.
2442 [16] J. J. Park, J. Hong, and S. Lee, “Investigation for software power
2443 consumption of code refactoring techniques,” in Proc. 26th Int.
2444 Conf. Softw. Eng. Knowl. Eng., 2014, pp. 717–722.
2445 [17] W. G. P. da Silva, L. Brisolara, U. B. Correa, and L. Carro,
2446 “Evaluation of the impact of code refactoring on embedded soft-
2447 ware efficiency,” in Proc. 1st Workshop de Sistemas Embarcados,
2448 2010, pp. 145–150.
2449 [18] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the
2450 performance impacts of android code smells,” in Proc. Int. Work-
2451 shop Mobile Softw. Eng. Syst., 2016, pp. 59–69. [Online]. Available:
2452 http://doi.acm.org/10.1145/2897073.2897100
2453 [19] A. Ouni, M. Kessentini, H. Sahraoui, andM. S. Hamdi, “The use of
2454 development history in software refactoring using a multi-
2455 objective evolutionary algorithm,” in Proc. 15th Annu. Conf. Genetic
2456 Evol. Comput., 2013, pp. 1461–1468.
2457 [20] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and
2458 A. Ouni, “Design defects detection and correction by example,” in
2459 Proc. IEEE 19th Int. Conf. Program Comprehension, 2011, pp. 81–90.
2460 [21] M. Harman and L. Tratt, “Pareto optimal search based refactoring
2461 at the design level,” in Proc. 9th Annu. Conf. Genetic Evol. Comput.,
2462 2007, pp. 1106–1113.
2463 [22] J. Bansiya and C. G. Davis, “A hierarchical model for object-
2464 oriented design quality assessment,” IEEE Trans. Softw. Eng., vol.
2465 28, no. 1, pp. 4–17, Jan. 2002.
2466 [23] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body
2467 of Knowledge (SWEBOK (R)): Version 3.0. Los Alamitos, CA, USA:
2468 IEEE Comput. Soc. Press, 2014.
2469 [24] R. Morales, F. Chicano, F. Khomh, and G. Antoniol, “Exact search-
2470 space size for the refactoring scheduling problem,” Automated
2471 Softw. Eng. J., 2017. [Online]. Available: http://dx.doi.org/
2472 10.1007/s10515-017-0213-6
2473 [25] M. O’Keeffe and M. O. Cinn�eide, “Search-based software main-
2474 tenance,” in Proc. 10th Eur. Conf. Softw. Maintenance Reengineering,
2475 2006, pp. 10 pp.–260.
2476 [26] O. Seng, J. Stammel, and D. Burkhart, “Search-based determina-
2477 tion of refactorings for improving the class structure of object-ori-
2478 ented systems,” in Proc. Annu. Conf. Genetic Evol. Comput., 2006,
2479 pp. 1909–1916.
2480 [27] C. L. Simons, I. C. Parmee, and R. Gwynllyw, “Interactive, evolu-
2481 tionary search in upstream object-oriented class design,” IEEE
2482 Trans. Softw. Eng., vol. 36, no. 6, pp. 798–816, Nov./Dec. 2010.
2483 [28] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum,
2484 “Maintainability defects detection and correction: A multi-objective
2485 approach,”Automated Softw. Eng., vol. 20, no. 1, pp. 47–79, 2013.
2486 [29] R. Mahouachi, M. Kessentini, and M. O. Cinn�eide, Search-Based
2487 Refactoring Detection Using Software Metrics Variation. Berlin,
2488 Germany: Springer, 2013, pp. 126–140.
2489 [30] M. W. Mkaouer, M. Kessentini, S. Bechikh, and M. O. Cinn�eide, A
2490 Robust Multi-Objective Approach for Software Refactoring Under
2491 Uncertainty. Berlin, Germany: Springer, 2014, pp. 168–183.

2492[31] R. Morales, A. Sabane, P. Musavi, F. Khomh, F. Chicano, and
2493G. Antoniol, “Finding the best compromise between design qual-
2494ity and testing effort during refactoring,” in Proc. IEEE 23rd Int.
2495Conf. Softw. Anal. Evol. Reengineering, 2016, pp. 24–35.
2496[32] M. Gottschalk, “Energy refactorings,” Master’s thesis, Softw.
2497Eng. Group, Carl von Ossietzky Univ., Oldenburg, Germany,
24982013.
2499[33] W. J. Brown, R. C.Malveau,W. H. Brown, H.W.McCormick III, and
2500T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures, and
2501Projects in Crisis, 1st ed. Hoboken,NJ, USA:Wiley,Mar. 1998.
2502[34] M. Fowler, Refactoring – Improving the Design of Existing Code, 1st
2503ed. Reading, MA, USA: Addison-Wesley, Jun. 1999.
2504[35] D. Singh and W. J. Kaiser, “The atom LEAP platform for energy-
2505efficient embedded computing,” Center for Embedded Netw. Sens.
2506UCLA: Center for Embedded Netw. Sens., 2010, http://escholarship.
2507org/uc/item/88b146bk
2508[36] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An empirical
2509study of the energy consumption of android applications,” in
2510Proc. Int. Conf. Softw. Maintenance Evolution., Sep. 2014,
2511pp. 121–130.
2512[37] R. Saborido, V. Arnaoudova, G. Beltrame, F. Khomh, and G.
2513Antoniol, “On the impact of sampling frequency on software energy
2514measurements,” PeerJ PrePrints, vol. 3, 2015, Art. no. e1219. [Online].
2515Available: http://dx.doi.org/10.7287/peerj.preprints.1219v2
2516[38] D. F. Lochtefeld and F. W. Ciarallo, “Multi-objectivization via
2517decomposition: An analysis of helper-objectives and complete
2518decomposition,” Eur. J. Oper. Res., vol. 243, no. 2, pp. 395–404,
25192015. [Online]. Available: http://www.sciencedirect.com/
2520science/article/pii/S0377221714009916
2521[39] J. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the perfor-
2522mance assessment of stochastic multiobjective optimizers,” Com-
2523put. Eng. Netw. Laboratory, ETH Zurich, Zurich, Switzerland,
2524TIK Rep. 214, 2006.
2525[40] K. Deb,Multi-Objective Optimization Using Evolutionary Algorithms.
2526Hoboken, NJ, USA: Wiley, 2001.
2527[41] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
2528ist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
2529Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.
2530[42] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
2531strength pareto evolutionary algorithm for multiobjective opti-
2532mization,” in Proc. Evol. Methods Design, Optimization Control
2533Applicat. Ind. Problems (EUROGEN ’01), Barcelona, Spain: Inte.
2534Center Numerical Methods Eng. (CIMNE), 2002, pp. 95–100.
2535[43] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba,
2536“MOCell: A cellular genetic algorithm for multiobjective opti-
2537mization,” Int. J. Intell. Syst., vol. 24, no. 7, 2009, pp. 726–746,
2538http://dx.doi.org/10.1002/int.20358
2539[44] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba,
2540“Design issues in a multiobjective cellular genetic algorithm,”
2541in Proc. Conf. Evol. Multi-Criterion Optimization, 2007, pp. 126–
2542140.
2543[45] C. Sahin, L. Pollock, and J. Clause, “From benchmarks to real
2544apps: Exploring the energy impacts of performance-directed
2545changes,” J. Syst. Softw., 2016. [Online]. Available: http://www.
2546sciencedirect.com/science/article/pii/S0164121216000893
2547[46] D. Li and W. G. J. Halfond, “An investigation into energy-saving
2548programming practices for android smartphone app devel-
2549opment,” in Proc. 3rd Int. Workshop Green Sustain. Softw., 2014,
2550pp. 46–53. [Online]. Available: http://doi.acm.org/10.1145/
25512593743.2593750
2552[47] A. R. Tonini, L. M. Fischer, J. C. B. de Mattos, and L. B. de
2553Brisolara, “Analysis and evaluation of the android best practices
2554impact on the efficiency of mobile applications,” in Proc. 3rd
2555Brazilian Symp. Comput. Syst. Eng., 2013, pp. 157–158.
2556[48] Android API: ArrayMap. [Online]. Available: https://developer.
2557android.com/reference/android/support/v4/util/ArrayMap.
2558html. Accessed on: May 18, 2017.
2559[49] R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F. Chicano, “On
2560the use of developers context for automatic refactoring of software
2561anti-patterns,” J. Syst. Softw., vol. 128, pp. 236–251, 2017.
2562[50] Monkey runner concepts. [Online]. Available: https://developer.
2563android.com/studio/test/monkeyrunner/index.html. Accessed
2564on: May 18, 2017.
2565[51] Debugging Android apps. [Online]. Available: https://developer.
2566android.com/reference/android/os/Debug.html. Accessed on:
2567May 18, 2017.
2568[52] N. Cliff, Ordinal Methods for Behavioral Data Analysis. Hove, U.K.:
2569Psychology Press, 2014.

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 29

https://hal.inria.fr/hal-01178734
https://hal.inria.fr/hal-01178734
http://doi.acm.org/10.1145/2897073.2897100
http://dx.doi.org/10.1007/s10515-017-0213-6
http://dx.doi.org/10.1007/s10515-017-0213-6
http://dx.doi.org/10.7287/peerj.preprints.1219v2
http://www.sciencedirect.com/science/article/pii/S0377221714009916
http://www.sciencedirect.com/science/article/pii/S0377221714009916
http://www.sciencedirect.com/science/article/pii/S0164121216000893
http://www.sciencedirect.com/science/article/pii/S0164121216000893
http://doi.acm.org/10.1145/2593743.2593750
http://doi.acm.org/10.1145/2593743.2593750
https://developer.android.com/reference/android/support/v4/util/ArrayMap.html
https://developer.android.com/reference/android/support/v4/util/ArrayMap.html
https://developer.android.com/reference/android/support/v4/util/ArrayMap.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/reference/android/os/Debug.html
https://developer.android.com/reference/android/os/Debug.html

IEE
E P

ro
of

2570 [53] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and
2571 L. Devine, “Exploring methods for evaluating group differences
2572 on the NSSE and other surveys: Are the t-test and Cohen’s d indi-
2573 ces the most appropriate choices,” in Proc. Annu. Meeting Southern
2574 Assoc. Institutional Res., 2006.
2575 [54] Android API guides: Location strategies. [Online]. Available:
2576 https://developer.android.com/guide/topics/location/
2577 strategies.html. Accessed on: May 18, 2017.
2578 [55] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
2579 and S. Romansky, “GreenMiner: A hardware based mining soft-
2580 ware repositories software energy consumption framework,” in
2581 Proc. 11th Work. Conf. Mining Softw. Repositories, 2014, pp. 12–21.
2582 [56] Y.-G. Gueheneuc and H. Albin-Amiot, “Recovering binary class
2583 relationships: Putting icing on the UML cake,” ACM SIGPLAN
2584 Notices, vol. 39, no. 10, pp. 301–314, 2004.
2585 [57] Y.-G. Gu�eh�eneuc and G. Antoniol, “DeMIMA: A multi-layered
2586 framework for design pattern identification,” IEEE Trans. Softw.
2587 Eng., vol. 34, no. 35, pp. 667–684, Sep. 2008.
2588 [58] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D.
2589 dissertation, Dept. Comput. Sci., Univ. Illinois at Urbana-Cham-
2590 paign, Champaign, IL, USA, 1992.
2591 [59] B. L. Miller and D. E. Goldberg, “Genetic algorithms, tournament
2592 selection, and the effects of noise,” Complex Syst., vol. 9, no. 3,
2593 pp. 193–212, 1995.
2594 [60] Y.-G. Gu�eh�eneuc, “PTIDEJ: Promoting patterns with patterns,” in
2595 Proc. 1st ECOOP Workshop Building Syst. Using Patterns, 2005,
2596 pp. 1–9.
2597 [61] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based soft-
2598 ware engineering: Trends, techniques and applications,” ACM
2599 Comput. Surv., vol. 45, no. 1, pp. 11:1–11:61, Dec. 2012. [Online].
2600 Available: http://doi.acm.org/10.1145/2379776.2379787
2601 [62] J. J. Durillo and A. J. Nebro, “jMetal: A java framework for multi-
2602 objective optimization,” Advances Eng. Softw., vol. 42, pp. 760–771,
2603 2011.
2604 [63] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms:
2605 A comparative case study and the strength Pareto approach,”
2606 IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.
2607 [64] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi,
2608 “Improving multi-objective code-smells correction using develop-
2609 ment history,” J. Syst. Softw., vol. 105, pp. 18–39, 2015.
2610 [65] K. Miettinen,Nonlinear Multiobjective Optimization. New York, NY,
2611 USA: Springer, 2012. [Online]. Available: https://books.google.
2612 ca/books?id=bnzjBwAAQBAJ
2613 [66] C. Sahin, et al., “How does code obfuscation impact energy
2614 usage?” J. Softw.: Evol. Process, vol. 28, pp. 565–588, 2016.
2615 [67] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond, “Detecting display
2616 energy hotspots in Android apps,” in Proc. 8th IEEE Int. Conf.
2617 Softw. Testing Verification Validation, Apr. 2015, pp. 1–10.
2618 [68] A. Banerjee and A. Roychoudhury, “Automated re-factoring of
2619 android apps to enhance energy-efficiency,” in Proc. Int. Workshop
2620 Mobile Softw. Eng. Syst., 2016, pp. 139–150. [Online]. Available:
2621 http://doi.acm.org/10.1145/2897073.2897086
2622 [69] Android API guides: Broadcasts. [Online]. Available: https://
2623 developer.android.com/guide/components/broadcasts.html.
2624 Accessed on: May 18th, 2017.
2625 [70] R. K. Yin, Case Study Research: Design and Methods - Third Edition,
2626 3rd ed. Thousand Oaks, CA, USA: SAGE Publications, 2002.
2627 [71] K. Mao, M. Harman, and Y. Jia, “Robotic testing of mobile apps
2628 for truly black-box automation,” IEEE Softw., vol. 34, no. 2,
2629 pp. 11–16, Mar./Apr. 2017.
2630 [72] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app
2631 sampling problem for app store mining,” in Proc. 12th Work. Conf.
2632 Mining Softw. Repositories, 2015, pp. 123–133. [Online]. Available:
2633 http://dl.acm.org/citation.cfm?id=2820518.2820535
2634 [73] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia,
2635 “Do they really smell bad? A study on developers’ perception of
2636 bad code smells,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2637 2014, pp. 101–110.
2638 [74] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and
2639 M. �OCinn�eide, “Recommendation system for software refactoring
2640 using innovization and interactive dynamic optimization,” in
2641 Proc. 29th ACM/IEEE Int. Conf. Automated Softw. Eng., 2014,
2642 pp. 331–336.
2643 [75] M. Linares-V �asquez, S. Klock, C. McMillan, A. Sabane, D. Poshy-
2644 vanyk, and Y.-G. Gu�eh�eneuc, “Domain matters: Bringing further
2645 evidence of the relationships among anti-patterns, application
2646 domains, and quality-related metrics in Java mobile apps,” in
2647 Proc. 22nd Int. Conf. Program Comprehension, 2014, pp. 232–243.

2648[76] D. Verloop, Code Smells in the Mobile Applications Domain. Delft,
2649The Netherlands: Delft Univ. Technol., 2013.
2650[77] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “JDeodorant:
2651Identification and removal of feature envy bad smells,” in Proc.
2652IEEE Int. Conf. Softw. Maintenance, 2007, pp. 519–520.
2653[78] J. Reimann, M. Brylski, and U. Aßmann, “A tool-supported qual-
2654ity smell catalogue for android developers,” Softwaretechnik-
2655Trends, vol. 34, no. 2, 2014, http://pi.informatik.uni-siegen.de/
2656stt/34_2/01_Fachgruppenberichte/MMSM2014/MMSM2014_
2657Paper6.pdf
2658[79] J. Reimann, M. Seifert, and U. Aßmann, “On the reuse and recom-
2659mendation of model refactoring specifications,” Softw. Syst.
2660Model., vol. 12, no. 3, pp. 579–596, 2013. [Online]. Available:
2661http://dx.doi.org/10.1007/s10270-012-0243-2
2662[80] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
2663“Investigating the energy impact of android smells,” in Proc. IEEE
266424th Int. Conf. Softw. Anal. Evol. Reengineering, Feb. 2017, pp. 115–
2665126.
2666[81] K. Aggarwal, A. Hindle, and E. Stroulia, “GreenAdvisor: A tool
2667for analyzing the impact of software evolution on energy con-
2668sumption,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2015,
2669pp. 311–320.
2670[82] I. Polato, D. Barbosa, A. Hindle, and F. Kon, “Hybrid HDFS:
2671Decreasing energy consumption and speeding up hadoop using
2672SSDs,” PeerJ PrePrints, vol. 3, 2015, Art. no. e1320. [Online]. Avail-
2673able: http://dx.doi.org/10.7287/peerj.preprints.1320v1
2674[83] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
2675grammers know about the energy consumption of software?”
2676PeerJ PrePrints, vol. 3, 2015, Art. no. e886.
2677[84] C. Zhang, A. Hindle, and D. M. Germ�an, “The impact of user
2678choice on energy consumption,” IEEE Softw., vol. 31, no. 3, pp. 69–
267975, May/Jun. 2014. [Online]. Available: http://dx.doi.org/
268010.1109/MS.2014.27
2681[85] K. Rasmussen, A. Wilson, and A. Hindle, “Green mining: Energy
2682consumption of advertisement blocking methods,” in Proc. 3rd
2683Int. Workshop Green Sustain. Softw., 2014, pp. 38–45.
2684[86] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent
2685inside my app?: Fine grained energy accounting on smartphones
2686with Eprof,” in Proc. 7th ACM Eur. Conf. Comput. Syst., 2012,
2687pp. 29–42.
2688[87] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating
2689mobile application energy consumption using program analysis,”
2690in Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 92–101.
2691[88] M. Linares-V �asquez, G. Bavota, C. Bernal-Crdenas, R. Oliveto,
2692M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy API
2693usage patterns in android apps: An empirical study,” in Proc. 11th
2694Work. Conf. Mining Softw. Repositories, 2014, pp. 2–11. [Online].
2695Available: http://doi.acm.org/10.1145/2597073.2597085
2696[89] R. Saborido, G. Beltrame, F. Khomh, E. Alba, and G. Antoniol,
2697“Optimizing user experience in choosing android applications,”
2698in Proc. IEEE 23rd Int. Conf. Softw. Anal. Evol. Reengineering, Mar.
26992016, pp. 438–448.
2700[90] C. Sahin, et al., “Initial explorations on design pattern energy
2701usage,” in Proc. 1st Int. Workshop Green Sustain. Softw., 2012,
2702pp. 55–61.
2703[91] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoud-
2704hury, “Detecting energy bugs and hotspots in mobile apps,” in
2705Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2014,
2706pp. 588–598.
2707[92] G. Pinto, A Refactoring Approach to Improve Energy Consumption of
2708Parallel Software Systems. Informatics Center, Federal University of
2709Pernambuco, Recife, Pernambuco, Brazil, 2015.
2710[93] D. Li, A. H. Tran, and W. G. J. Halfond, “Making web applications
2711more energy efficient for OLED smartphones,” in Proc. 36th Int.
2712Conf. Softw. Eng., 2014, pp. 527–538. [Online]. Available: http://
2713doi.acm.org/10.1145/2568225.2568321
2714[94] M. Linares-V �asquez, G. Bavota, C. E. B. C�ardenas, R. Oliveto,
2715M. Di Penta, and D. Poshyvanyk, “Optimizing energy con-
2716sumption of GUIs in android apps: A multi-objective
2717approach,” in Proc. 10th Joint Meeting Found. Softw. Eng., 2015,
2718pp. 143–154.
2719[95] B. R. Bruce, J. Petke, andM. Harman, “Reducing energy consump-
2720tion using genetic improvement,” in Proc. Annu. Conf. Genetic Evol.
2721Comput., 2015, pp. 1327–1334.
2722[96] I. Manotas, L. Pollock, and J. Clause, “SEEDS: A software engi-
2723neer’s energy-optimization decision support framework,” in Proc.
272436th Int. Conf. Softw. Eng., 2014, pp. 503–514. [Online]. Available:
2725http://doi.acm.org/10.1145/2568225.2568297

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2017

https://developer.android.com/guide/topics/location/strategies.html
https://developer.android.com/guide/topics/location/strategies.html
http://doi.acm.org/10.1145/2379776.2379787
https://books.google.ca/books?id=bnzjBwAAQBAJ
https://books.google.ca/books?id=bnzjBwAAQBAJ
http://doi.acm.org/10.1145/2897073.2897086
https://developer.android.com/guide/components/broadcasts.html
https://developer.android.com/guide/components/broadcasts.html
http://dl.acm.org/citation.cfm?id=2820518.2820535
http://dx.doi.org/10.1007/s10270-012-0243-2
http://dx.doi.org/10.7287/peerj.preprints.1320v1
http://dx.doi.org/10.1109/MS.2014.27
http://dx.doi.org/10.1109/MS.2014.27
http://doi.acm.org/10.1145/2597073.2597085
http://doi.acm.org/10.1145/2568225.2568321
http://doi.acm.org/10.1145/2568225.2568321
http://doi.acm.org/10.1145/2568225.2568297

IEE
E P

ro
of

2726 Rodrigo Morales received the BS degree in
2727 computer science from Polytechnic of Mexico, in
2728 2005 and the MS degree in computer technology
2729 from the Polytechnic of Mexico, in 2008, where
2730 he also worked as a professor in the Computer
2731 Science Department for five years. He is working
2732 toward the PhD degree at Polytechnique Mon-
2733 treal. He has also worked in the bank industry as
2734 a software developer for more than three years.
2735 He is currently supervised by Foutse Khomh,
2736 Giuliano Antoniol (Poly Montreal), and Francisco
2737 Chicano (University of Malaga, Spain). His research interests include
2738 software design quality, anti-patterns, and automated-refactoring. He is
2739 a member of the IEEE.

2740

2741 Rub�en Saborido received the MS degree in soft-
2742 ware engineering and artificial intelligence from
2743 the University of Malaga (Spain), where he also
2744 worked for three years as a researcher. He is
2745 working toward the PhD degree in software engi-
2746 neering at Polytechnique Montreal. His research
2747 focuses on search based software engineering
2748 applied to performance and energy optimization
2749 of mobile devices. He is also interested in the use
2750 of metaheuristics to solve complex multiobjective
2751 optimization problems and in the design of algo-
2752 rithms to approximate a part of the whole Pareto optimal front taking into
2753 account user preferences. He has published six papers in ISI indexed
2754 journals, and conference papers in MCDM, SANER, and ICPC. He co-
2755 organized the International Conference on Multiple Criteria Decision
2756 Making, in 2013. He is a member of the IEEE.

2757

2758 Foutse Khomh received the PhD degree in soft-
2759 ware engineering from the University of Montr�eal,
2760 in 2010. He is an associate professor with Poly-
2761 technique Montr�eal, where he heads the SWAT
2762 Lab on software analytics and cloud engineering
2763 research (http://swat.polymtl.ca/). His research
2764 interests include software maintenance and
2765 evolution, cloud engineering, service-centric soft-
2766 ware engineering, empirical software engineer-
2767 ing, and software analytic. He has published
2768 several papers in international conferences and
2769 journals, including ICSM(E), MSR, SANER, ICWS, HPCC, IPCCC, the
2770 Journal of Systems and Software, the Journal of Software: Evolution
2771 and Process, and EMSE. His work has received three Best Paper
2772 Awards and fourteen nominations for Best paper Awards. He has served
2773 on the program committees of several international conferences includ-
2774 ing ICSM(E), SANER, MSR, ICPC, SCAM, ESEM and has reviewed for
2775 top international journals such as SQJ, EMSE, TSE and TOSEM. He is
2776 program chair for Satellite Events at SANER 2015, program co-chair of
2777 SCAM 2015 and ICSME 2018, and general chair of ICPC 2018. He is
2778 one of the organizers of the RELENG workshop series (http://releng.
2779 polymtl.ca) and has been guest editor for special issues in the IEEE Soft-
2780 ware Magazine and the Journal of Software: Evolution and Process. He
2781 is a member of the IEEE.

2782Francisco Chicano received the degree in phys-
2783ics from the National Distance Education Univer-
2784sity and the PhD degree in computer science from
2785the University of Malaga. Since 2008 he is in the
2786Department of Languages and Computing Scien-
2787ces of the University of Malaga. His research inter-
2788ests include the application of search techniques
2789to Software Engineering problems. In particular,
2790he contributed to the domains of software testing,
2791model checking, software project scheduling, and
2792requirements engineering. He is also interested in
2793the application of theoretical results to efficiently solve combinatorial opti-
2794mization problems. He is in the editorial board of several international
2795journals and has been program chair in international events.

2796

2797Giuliano Antoniol received the Laurea degree in
2798electronic engineering from the Universita di
2799Padova, Italy, in 1982. In 2004 he received the
2800PhD degree in electrical engineering from Poly-
2801technique Montr�eal. He worked in companies,
2802research institutions and universities. In 2005 he
2803was awarded the Canada Research chair Tier I in
2804software change and evolution. He has partici-
2805pated in the program and organization commit-
2806tees of numerous IEEE-sponsored international
2807conferences. He served as program chair, indus-
2808trial chair, tutorial, and general chair of international conferences and
2809workshops. He is a member of the editorial boards of four journals: The
2810Journal of Software Testing Verification & Reliability, the Journal of
2811Empirical Software Engineering and the Software Quality Journal and
2812the Journal of Software Maintenance and Evolution: Research and Prac-
2813tice. He served as deputy chair of the Steering Committee for the IEEE
2814International Conference on Software Maintenance. He contributed to
2815the program committees of more than 30 IEEE and ACM conferences
2816and workshops, and he acts as referee for all major software engineering
2817journals. He is currently full professor with Polytechnique Montr�eal,
2818where he works in the area of software evolution, software traceability,
2819search based software engineering, software testing and software main-
2820tenance. He is a senior member of the IEEE.

2821

2822" For more information on this or any other computing topic,
2823please visit our Digital Library at www.computer.org/publications/dlib.

MORALES ET AL.: EARMO: AN ENERGY-AWARE REFACTORING APPROACH FOR MOBILE APPS 31

http://swat.polymtl.ca/
http://releng.polymtl.ca
http://releng.polymtl.ca

